
AMD_DBGAPI
0.77.3

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen 1.9.8

Thu Jul 24 2025 15:00:42

i

1 AMD Debugger API Specification 1

1.1 Introduction . 1

1.2 AMD GPU Execution Model . 2

1.3 Supported AMD GPU Architectures . 4

1.4 Known Limitations and Restrictions . 5

1.5 References . 6

1.6 Legal Disclaimer and Copyright Information . 7

2 Topic Documentation 9

2.1 Symbol Versions . 9

2.1.1 Detailed Description . 10

2.1.2 Macro Definition Documentation . 10

2.1.2.1 AMD_DBGAPI_VERSION_0_54 . 10

2.1.2.2 AMD_DBGAPI_VERSION_0_56 . 10

2.1.2.3 AMD_DBGAPI_VERSION_0_58 . 10

2.1.2.4 AMD_DBGAPI_VERSION_0_62 . 10

2.1.2.5 AMD_DBGAPI_VERSION_0_64 . 10

2.1.2.6 AMD_DBGAPI_VERSION_0_67 . 11

2.1.2.7 AMD_DBGAPI_VERSION_0_68 . 11

2.1.2.8 AMD_DBGAPI_VERSION_0_70 . 11

2.1.2.9 AMD_DBGAPI_VERSION_0_76 . 11

2.1.2.10 AMD_DBGAPI_VERSION_0_77 . 11

2.2 Basic Types . 11

2.2.1 Detailed Description . 12

2.2.2 Typedef Documentation . 13

2.2.2.1 amd_dbgapi_global_address_t . 13

2.2.2.2 amd_dbgapi_notifier_t . 13

2.2.2.3 amd_dbgapi_os_agent_id_t . 13

2.2.2.4 amd_dbgapi_os_process_id_t . 13

2.2.2.5 amd_dbgapi_os_queue_id_t . 14

2.2.2.6 amd_dbgapi_os_queue_packet_id_t . 14

2.2.2.7 amd_dbgapi_size_t . 14

2.2.3 Enumeration Type Documentation . 14

2.2.3.1 amd_dbgapi_changed_t . 14

2.2.3.2 amd_dbgapi_os_queue_type_t . 14

2.3 Status Codes . 16

2.3.1 Detailed Description . 17

2.3.2 Enumeration Type Documentation . 17

2.3.2.1 amd_dbgapi_status_t . 17

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

ii

2.3.3 Function Documentation . 21

2.3.3.1 amd_dbgapi_get_status_string() . 21

2.4 Versioning . 21

2.4.1 Detailed Description . 22

2.4.2 Macro Definition Documentation . 22

2.4.2.1 AMD_DBGAPI_VERSION_MAJOR . 22

2.4.2.2 AMD_DBGAPI_VERSION_MINOR . 22

2.4.3 Function Documentation . 22

2.4.3.1 amd_dbgapi_get_build_name() . 22

2.4.3.2 amd_dbgapi_get_version() . 22

2.5 Initialization and Finalization . 23

2.5.1 Detailed Description . 23

2.5.2 Function Documentation . 23

2.5.2.1 amd_dbgapi_finalize() . 23

2.5.2.2 amd_dbgapi_initialize() . 24

2.6 Architectures . 24

2.6.1 Detailed Description . 26

2.6.2 Macro Definition Documentation . 26

2.6.2.1 AMD_DBGAPI_ARCHITECTURE_NONE . 26

2.6.3 Typedef Documentation . 26

2.6.3.1 amd_dbgapi_symbolizer_id_t . 26

2.6.4 Enumeration Type Documentation . 26

2.6.4.1 amd_dbgapi_architecture_info_t . 26

2.6.4.2 amd_dbgapi_instruction_kind_t . 27

2.6.4.3 amd_dbgapi_instruction_properties_t . 29

2.6.5 Function Documentation . 30

2.6.5.1 amd_dbgapi_architecture_get_info() . 30

2.6.5.2 amd_dbgapi_classify_instruction() . 30

2.6.5.3 amd_dbgapi_disassemble_instruction() . 32

2.6.5.4 amd_dbgapi_get_architecture() . 34

2.7 Processes . 35

2.7.1 Detailed Description . 37

2.7.2 Macro Definition Documentation . 37

2.7.2.1 AMD_DBGAPI_PROCESS_NONE . 37

2.7.3 Typedef Documentation . 37

2.7.3.1 amd_dbgapi_client_process_id_t . 37

2.7.4 Enumeration Type Documentation . 37

2.7.4.1 amd_dbgapi_endianness_t . 37

2.7.4.2 amd_dbgapi_process_info_t . 38

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

iii

2.7.4.3 amd_dbgapi_progress_t . 38

2.7.4.4 amd_dbgapi_wave_creation_t . 39

2.7.5 Function Documentation . 40

2.7.5.1 amd_dbgapi_process_attach() . 40

2.7.5.2 amd_dbgapi_process_detach() . 41

2.7.5.3 amd_dbgapi_process_get_info() . 42

2.7.5.4 amd_dbgapi_process_set_progress() . 43

2.7.5.5 amd_dbgapi_process_set_wave_creation() . 44

2.7.6 Generating a core dump of a process . 44

2.7.6.1 Detailed Description . 45

2.7.6.2 Function Documentation . 45

2.8 Code Objects . 47

2.8.1 Detailed Description . 47

2.8.2 Macro Definition Documentation . 48

2.8.2.1 AMD_DBGAPI_CODE_OBJECT_NONE . 48

2.8.3 Enumeration Type Documentation . 48

2.8.3.1 amd_dbgapi_code_object_info_t . 48

2.8.4 Function Documentation . 50

2.8.4.1 amd_dbgapi_code_object_get_info() . 50

2.8.4.2 amd_dbgapi_process_code_object_list() . 51

2.9 Agents . 52

2.9.1 Detailed Description . 52

2.9.2 Macro Definition Documentation . 53

2.9.2.1 AMD_DBGAPI_AGENT_NONE . 53

2.9.3 Enumeration Type Documentation . 53

2.9.3.1 amd_dbgapi_agent_info_t . 53

2.9.3.2 amd_dbgapi_agent_state_t . 54

2.9.4 Function Documentation . 54

2.9.4.1 amd_dbgapi_agent_get_info() . 54

2.9.4.2 amd_dbgapi_process_agent_list() . 55

2.10 Queues . 56

2.10.1 Detailed Description . 58

2.10.2 Macro Definition Documentation . 58

2.10.2.1 AMD_DBGAPI_QUEUE_NONE . 58

2.10.3 Enumeration Type Documentation . 58

2.10.3.1 amd_dbgapi_exceptions_t . 58

2.10.3.2 amd_dbgapi_queue_info_t . 60

2.10.3.3 amd_dbgapi_queue_state_t . 61

2.10.4 Function Documentation . 61

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

iv

2.10.4.1 amd_dbgapi_process_queue_list() . 61

2.10.4.2 amd_dbgapi_queue_get_info() . 62

2.10.4.3 amd_dbgapi_queue_packet_list() . 63

2.11 Dispatches . 64

2.11.1 Detailed Description . 65

2.11.2 Macro Definition Documentation . 66

2.11.2.1 AMD_DBGAPI_DISPATCH_NONE . 66

2.11.3 Enumeration Type Documentation . 66

2.11.3.1 amd_dbgapi_dispatch_barrier_t . 66

2.11.3.2 amd_dbgapi_dispatch_fence_scope_t . 66

2.11.3.3 amd_dbgapi_dispatch_info_t . 66

2.11.4 Function Documentation . 68

2.11.4.1 amd_dbgapi_dispatch_get_info() . 68

2.11.4.2 amd_dbgapi_process_dispatch_list() . 69

2.12 Workgroup . 70

2.12.1 Detailed Description . 71

2.12.2 Macro Definition Documentation . 71

2.12.2.1 AMD_DBGAPI_WORKGROUP_NONE . 71

2.12.3 Enumeration Type Documentation . 71

2.12.3.1 amd_dbgapi_workgroup_info_t . 71

2.12.4 Function Documentation . 72

2.12.4.1 amd_dbgapi_process_workgroup_list() . 72

2.12.4.2 amd_dbgapi_workgroup_get_info() . 73

2.13 Wave . 73

2.13.1 Detailed Description . 75

2.13.2 Macro Definition Documentation . 75

2.13.2.1 AMD_DBGAPI_WAVE_NONE . 75

2.13.3 Enumeration Type Documentation . 75

2.13.3.1 amd_dbgapi_resume_mode_t . 75

2.13.3.2 amd_dbgapi_wave_info_t . 76

2.13.3.3 amd_dbgapi_wave_state_t . 77

2.13.3.4 amd_dbgapi_wave_stop_reasons_t . 78

2.13.4 Function Documentation . 81

2.13.4.1 amd_dbgapi_process_wave_list() . 81

2.13.4.2 amd_dbgapi_wave_get_info() . 82

2.13.4.3 amd_dbgapi_wave_resume() . 83

2.13.4.4 amd_dbgapi_wave_stop() . 86

2.14 Displaced Stepping . 87

2.14.1 Detailed Description . 88

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

v

2.14.2 Macro Definition Documentation . 89

2.14.2.1 AMD_DBGAPI_DISPLACED_STEPPING_NONE . 89

2.14.3 Enumeration Type Documentation . 89

2.14.3.1 amd_dbgapi_displaced_stepping_info_t . 89

2.14.4 Function Documentation . 90

2.14.4.1 amd_dbgapi_displaced_stepping_complete() . 90

2.14.4.2 amd_dbgapi_displaced_stepping_get_info() . 91

2.14.4.3 amd_dbgapi_displaced_stepping_start() . 92

2.15 Watchpoints . 93

2.15.1 Detailed Description . 94

2.15.2 Macro Definition Documentation . 95

2.15.2.1 AMD_DBGAPI_WATCHPOINT_NONE . 95

2.15.3 Enumeration Type Documentation . 95

2.15.3.1 amd_dbgapi_watchpoint_info_t . 95

2.15.3.2 amd_dbgapi_watchpoint_kind_t . 95

2.15.3.3 amd_dbgapi_watchpoint_share_kind_t . 96

2.15.4 Function Documentation . 96

2.15.4.1 amd_dbgapi_remove_watchpoint() . 96

2.15.4.2 amd_dbgapi_set_watchpoint() . 97

2.15.4.3 amd_dbgapi_watchpoint_get_info() . 98

2.16 Registers . 99

2.16.1 Detailed Description . 100

2.16.2 Macro Definition Documentation . 100

2.16.2.1 AMD_DBGAPI_REGISTER_CLASS_NONE . 100

2.16.2.2 AMD_DBGAPI_REGISTER_NONE . 101

2.16.3 Enumeration Type Documentation . 101

2.16.3.1 amd_dbgapi_register_class_info_t . 101

2.16.3.2 amd_dbgapi_register_class_state_t . 101

2.16.3.3 amd_dbgapi_register_exists_t . 101

2.16.3.4 amd_dbgapi_register_info_t . 102

2.16.3.5 amd_dbgapi_register_properties_t . 104

2.16.4 Function Documentation . 104

2.16.4.1 amd_dbgapi_architecture_register_class_get_info() 104

2.16.4.2 amd_dbgapi_architecture_register_class_list() . 105

2.16.4.3 amd_dbgapi_architecture_register_list() . 106

2.16.4.4 amd_dbgapi_dwarf_register_to_register() . 107

2.16.4.5 amd_dbgapi_prefetch_register() . 108

2.16.4.6 amd_dbgapi_read_register() . 109

2.16.4.7 amd_dbgapi_register_get_info() . 110

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

vi

2.16.4.8 amd_dbgapi_register_is_in_register_class() . 111

2.16.4.9 amd_dbgapi_wave_register_exists() . 112

2.16.4.10 amd_dbgapi_wave_register_list() . 112

2.16.4.11 amd_dbgapi_write_register() . 113

2.17 Memory . 114

2.17.1 Detailed Description . 117

2.17.2 Macro Definition Documentation . 117

2.17.2.1 AMD_DBGAPI_ADDRESS_CLASS_NONE . 117

2.17.2.2 AMD_DBGAPI_ADDRESS_SPACE_GLOBAL . 117

2.17.2.3 AMD_DBGAPI_ADDRESS_SPACE_NONE . 118

2.17.2.4 AMD_DBGAPI_LANE_NONE . 118

2.17.3 Typedef Documentation . 118

2.17.3.1 amd_dbgapi_lane_id_t . 118

2.17.3.2 amd_dbgapi_segment_address_t . 118

2.17.4 Enumeration Type Documentation . 119

2.17.4.1 amd_dbgapi_address_class_info_t . 119

2.17.4.2 amd_dbgapi_address_class_state_t . 119

2.17.4.3 amd_dbgapi_address_space_access_t . 119

2.17.4.4 amd_dbgapi_address_space_info_t . 120

2.17.4.5 amd_dbgapi_alu_exceptions_precision_t . 120

2.17.4.6 amd_dbgapi_memory_precision_t . 121

2.17.4.7 amd_dbgapi_segment_address_dependency_t . 121

2.17.5 Function Documentation . 122

2.17.5.1 amd_dbgapi_address_class_get_info() . 122

2.17.5.2 amd_dbgapi_address_dependency() . 123

2.17.5.3 amd_dbgapi_address_is_in_address_class() . 124

2.17.5.4 amd_dbgapi_address_space_get_info() . 125

2.17.5.5 amd_dbgapi_architecture_address_class_list() . 126

2.17.5.6 amd_dbgapi_architecture_address_space_list() . 127

2.17.5.7 amd_dbgapi_convert_address_space() . 128

2.17.5.8 amd_dbgapi_dwarf_address_class_to_address_class() 130

2.17.5.9 amd_dbgapi_dwarf_address_space_to_address_space() 131

2.17.5.10 amd_dbgapi_read_memory() . 132

2.17.5.11 amd_dbgapi_set_alu_exceptions_precision() . 134

2.17.5.12 amd_dbgapi_set_memory_precision() . 135

2.17.5.13 amd_dbgapi_write_memory() . 136

2.18 Events . 137

2.18.1 Detailed Description . 139

2.18.2 Macro Definition Documentation . 139

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

vii

2.18.2.1 AMD_DBGAPI_EVENT_NONE . 139

2.18.3 Enumeration Type Documentation . 139

2.18.3.1 amd_dbgapi_event_info_t . 139

2.18.3.2 amd_dbgapi_event_kind_t . 140

2.18.3.3 amd_dbgapi_runtime_state_t . 142

2.18.4 Function Documentation . 143

2.18.4.1 amd_dbgapi_event_get_info() . 143

2.18.4.2 amd_dbgapi_event_processed() . 144

2.18.4.3 amd_dbgapi_process_next_pending_event() . 144

2.19 Logging . 145

2.19.1 Detailed Description . 145

2.19.2 Enumeration Type Documentation . 145

2.19.2.1 amd_dbgapi_log_level_t . 145

2.19.3 Function Documentation . 146

2.19.3.1 amd_dbgapi_set_log_level() . 146

2.20 Callbacks . 146

2.20.1 Detailed Description . 147

2.20.2 Macro Definition Documentation . 148

2.20.2.1 AMD_DBGAPI_BREAKPOINT_NONE . 148

2.20.3 Typedef Documentation . 148

2.20.3.1 amd_dbgapi_callbacks_t . 148

2.20.3.2 amd_dbgapi_client_thread_id_t . 148

2.20.4 Enumeration Type Documentation . 148

2.20.4.1 amd_dbgapi_breakpoint_action_t . 148

2.20.4.2 amd_dbgapi_breakpoint_info_t . 148

2.20.4.3 amd_dbgapi_client_process_info_t . 149

2.20.5 Function Documentation . 149

2.20.5.1 amd_dbgapi_breakpoint_get_info() . 149

2.20.5.2 amd_dbgapi_report_breakpoint_hit() . 150

3 Data Structure Documentation 153

3.1 amd_dbgapi_address_class_id_t Struct Reference . 153

3.1.1 Detailed Description . 153

3.1.2 Field Documentation . 153

3.1.2.1 handle . 153

3.2 amd_dbgapi_address_space_id_t Struct Reference . 154

3.2.1 Detailed Description . 154

3.2.2 Field Documentation . 154

3.2.2.1 handle . 154

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

viii

3.3 amd_dbgapi_agent_id_t Struct Reference . 154

3.3.1 Detailed Description . 155

3.3.2 Field Documentation . 155

3.3.2.1 handle . 155

3.4 amd_dbgapi_architecture_id_t Struct Reference . 155

3.4.1 Detailed Description . 155

3.4.2 Field Documentation . 155

3.4.2.1 handle . 155

3.5 amd_dbgapi_breakpoint_id_t Struct Reference . 156

3.5.1 Detailed Description . 156

3.5.2 Field Documentation . 156

3.5.2.1 handle . 156

3.6 amd_dbgapi_callbacks_s Struct Reference . 156

3.6.1 Detailed Description . 157

3.6.2 Field Documentation . 157

3.6.2.1 allocate_memory . 157

3.6.2.2 client_process_get_info . 158

3.6.2.3 deallocate_memory . 158

3.6.2.4 insert_breakpoint . 159

3.6.2.5 log_message . 159

3.6.2.6 remove_breakpoint . 160

3.6.2.7 xfer_global_memory . 160

3.7 amd_dbgapi_code_object_id_t Struct Reference . 161

3.7.1 Detailed Description . 161

3.7.2 Field Documentation . 161

3.7.2.1 handle . 161

3.8 amd_dbgapi_core_state_data_t Struct Reference . 161

3.8.1 Detailed Description . 162

3.8.2 Field Documentation . 162

3.8.2.1 data . 162

3.8.2.2 endianness . 162

3.8.2.3 size . 162

3.9 amd_dbgapi_direct_call_register_pair_information_t Struct Reference . 163

3.9.1 Detailed Description . 163

3.9.2 Field Documentation . 163

3.9.2.1 saved_return_address_register . 163

3.9.2.2 target_address . 164

3.10 amd_dbgapi_dispatch_id_t Struct Reference . 164

3.10.1 Detailed Description . 164

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

ix

3.10.2 Field Documentation . 164

3.10.2.1 handle . 164

3.11 amd_dbgapi_displaced_stepping_id_t Struct Reference . 164

3.11.1 Detailed Description . 165

3.11.2 Field Documentation . 165

3.11.2.1 handle . 165

3.12 amd_dbgapi_event_id_t Struct Reference . 165

3.12.1 Detailed Description . 165

3.12.2 Field Documentation . 165

3.12.2.1 handle . 165

3.13 amd_dbgapi_process_id_t Struct Reference . 166

3.13.1 Detailed Description . 166

3.13.2 Field Documentation . 166

3.13.2.1 handle . 166

3.14 amd_dbgapi_queue_id_t Struct Reference . 166

3.14.1 Detailed Description . 167

3.14.2 Field Documentation . 167

3.14.2.1 handle . 167

3.15 amd_dbgapi_register_class_id_t Struct Reference . 167

3.15.1 Detailed Description . 167

3.15.2 Field Documentation . 167

3.15.2.1 handle . 167

3.16 amd_dbgapi_register_id_t Struct Reference . 168

3.16.1 Detailed Description . 168

3.16.2 Field Documentation . 168

3.16.2.1 handle . 168

3.17 amd_dbgapi_watchpoint_id_t Struct Reference . 168

3.17.1 Detailed Description . 168

3.17.2 Field Documentation . 169

3.17.2.1 handle . 169

3.18 amd_dbgapi_watchpoint_list_t Struct Reference . 169

3.18.1 Detailed Description . 169

3.18.2 Field Documentation . 170

3.18.2.1 count . 170

3.18.2.2 watchpoint_ids . 170

3.19 amd_dbgapi_wave_id_t Struct Reference . 170

3.19.1 Detailed Description . 170

3.19.2 Field Documentation . 170

3.19.2.1 handle . 170

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

x

3.20 amd_dbgapi_workgroup_id_t Struct Reference . 171

3.20.1 Detailed Description . 171

3.20.2 Field Documentation . 171

3.20.2.1 handle . 171

4 File Documentation 173

4.1 include/amd-dbgapi/amd-dbgapi.h File Reference . 173

4.1.1 Detailed Description . 188

4.1.2 Macro Definition Documentation . 188

4.1.2.1 AMD_DBGAPI . 188

4.1.2.2 AMD_DBGAPI_CALL . 189

4.1.2.3 AMD_DBGAPI_EXPORT . 189

4.1.2.4 AMD_DBGAPI_HANDLE_LITERAL . 189

4.1.2.5 AMD_DBGAPI_IMPORT . 189

4.1.2.6 DEPRECATED . 189

4.2 amd-dbgapi.h . 189

Index 205

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

Chapter 1

AMD Debugger API Specification

1.1 Introduction

The amd-dbgapi is a library that implements an AMD GPU debugger application programming interface (API). It provides
the support necessary for a client of the library to control the execution and inspect the state of supported commercially
available AMD GPU devices.

The term client is used to refer to the application that uses this API.

The term library is used to refer to the implementation of this interface being used by the client.

The term AMD GPU is used to refer to commercially available AMD GPU devices supported by the library.

The term inferior is used to refer to the process being debugged.

The library does not provide any operations to perform symbolic mappings, code object decoding, or stack unwinding.
The client must use the AMD GPU code object ELF ABI defined in [User Guide for AMDGPU Backend - Code Object]
(https://llvm.org/docs/AMDGPUUsage.html#code-object), together with the AMD GPU debug in-
formation DWARF and call frame information CFI ABI define in [User Guide for AMDGPU Backend - Code Object -
DWARF] (https://llvm.org/docs/AMDGPUUsage.html#dwarf) to perform those tasks.

The library does not provide operations for inserting or managing breakpoints. The client must write the architecture
specific breakpoint instruction provided by the AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION
query into the loaded code object memory to set breakpoints. For resuming from breakpoints the client must use the dis-
placed stepping mechanism provided by amd_dbgapi_displaced_stepping_start and amd_dbgapi_displaced_stepping_complete
in conjunction with the amd_dbgapi_wave_resume in single step mode. In order to determine the location
of stopped waves the client must read the architecture specific program counter register available using the
AMD_DBGAPI_ARCHITECTURE_INFO_PC_REGISTER query and adjust it by the amount specified by the
AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION_PC_ADJUST query.

The client is responsible for checking that only a single thread at a time invokes a function provided by the library. A
callback (see Callbacks) invoked by the library must not itself invoke any function provided by the library.

The library implementation uses the native operating system to inspect and control the inferior. Therefore, the library
must be executed on the same machine as the inferior.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

https://llvm.org/docs/AMDGPUUsage.html#code-object
https://llvm.org/docs/AMDGPUUsage.html#dwarf

2 AMD Debugger API Specification

A library instance is defined as the period between a call to amd_dbgapi_initialize and a matching call to
amd_dbgapi_finalize.

The library uses opaque handles to refer to the entities that it manages. A handle value should not be modified directly.
See the handle definitions for information on the lifetime and scope of handles of that type. Handles are invalidated
outside their lifetime, scope, or single library instance. If a handle is returned by an operation in one library instance
which then becomes invalidated, then any operation using that handle in the same library instance will return an invalid
handle error code. However, it is undefined to use a handle created by an operation in one library instance in the
operations of another library instance. A handle value is globally unique within each library instance. This is true even
if the handle becomes invalidated: handle values are not reused within a library instance. Every handle with handle
value of 0 is reserved to indicate the handle does not reference an entity.

When the library is first loaded it is in the uninitialized state with the logging level set to AMD_DBGAPI_LOG_LEVEL_NONE.

1.2 AMD GPU Execution Model

In this section the AMD GPU execution model is described to provide background to the reader if they are not familiar
with this environment. The AMD GPU execution model is more complicated than that of a traditional CPU because of
how GPU hardware is used to accelerate and schedule the very large number of threads of execution that are created
on GPUs.

Chapter 2 of the [HSA Programmer's Reference Manual][hsa-prm] provides an introduction to this execution model.
Note that the AMD ROCm compilers compile directly to ISA and do not use the HSAIL intermediate language. However,
the ROCr low-level runtime and ROCgdb debugger use the same terminology.

In this model, a CPU process may interact with multiple AMD GPU devices, which are termed agents. A Process
Address Space Identifier (PASID) is created for each process that interacts with agents. An agent can be executing
code for multiple processes at once. This is achieved by mapping the PASID to one of a limited set of Virtual Memory
Identifiers (VMIDs). Each VMID is associated with its own page table.

The AMD GPU device driver for Linux, termed the Kernel Mode Driver (KMD), manages the page tables used by each
GPU so they correlate with the CPU page table for the corresponding process. The CPU and GPU page tables do
not necessarily map all the same memory pages but pages they do have in common have the same virtual address.
Therefore, the CPU and GPUs have a unified address space.

Each GPU includes one or more Microcode Engines (ME) that can execute microcode firmware. This firmware includes
a Hardware Scheduler (HWS) that, in collaboration with the KMD, manages which processes, identified by a PASID, are
mapped onto the GPU using one of the limited VMIDs. This mapping configures the VMID to use the GPU page table
that corresponds to the PASID. In this way, the code executing on the GPU from different processes is isolated.

Multiple software submission queues may be created for each agent. The GPU hardware has a limited number of
pipes, each of which has a fixed number of hardware queues. The HWS, in collaboration with the KMD, is responsible
for mapping software queues onto hardware queues. This is done by multiplexing the software queues onto hardware
queues using time slicing. The software queues provide a virtualized abstraction, allowing for more queues than are
directly supported by the hardware. Each ME manages its own set of pipes and their associated hardware queues.

To execute code on the GPU, a packet must be created and placed in a software queue. This is achieved using regular
user space atomic memory operations. No Linux kernel call is required. For this reason, the queues are termed user
mode queues.

The AMD ROCm platform uses the Asynchronous Queuing Language (AQL) packet format defined in the [HSA Platform
System Architecture Specification][hsa-sysarch]. Packets can request GPU management actions (for example, manage

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

1.2 AMD GPU Execution Model 3

memory coherence) and the execution of kernel functions. The ME firmware includes the Command Processor (CP)
which, together with fixed-function hardware support, is responsible for detecting when packets are added to software
queues that are mapped to hardware queues. Once detected, CP is responsible for initiating actions requested by the
packet, using the appropriate VMID when performing all memory operations.

Dispatch packets are used to request the execution of a kernel function. Each dispatch packet specifies the address
of a kernel descriptor, the address of the kernel argument block holding the arguments to the kernel function, and the
number of threads of execution to create to execute the kernel function. The kernel descriptor describes how the CP
must configure the hardware to execute the kernel function and the starting address of the kernel function code. The
compiler generates a kernel descriptor in the code object for each kernel function and determines the kernel argument
block layout. The number of threads of execution is specified as a grid, such that each thread of execution can identify
its position in the grid. Conceptually, each of these threads executes the same kernel code, with the same arguments.

The dispatch grid is organized as a three-dimensional collection of workgroups, where each workgroup is the same size
(except for potential boundary partial workgroups). The workgroups form a three-dimensional collection of work-items.
The work-items are the threads of execution. The position of a work-item is its zero-based three-dimensional position
in a workgroup, termed its work-item ID, plus its workgroup's three-dimensional position in the dispatch grid, termed its
workgroup ID. These three-dimensional IDs can also be expressed as a zero-based one-dimensional ID, termed a flat
ID, by simply numbering the elements in a natural manner akin to linearizing a multi-dimensional array.

Consecutive work-items, in flat work-item ID order, of a workgroup are organized into fixed size wavefronts, or waves for
short. Each work-item position in the wave is termed a lane, and has a zero-base lane ID. The hardware imposes an
upper limit on the number of work-items in a workgroup but does not limit the number of workgroups in a dispatch grid.
The hardware executes instructions for waves independently. But the lanes of a wave all execute the same instruction
jointly. This is termed Single Instruction Multiple Thread (SIMT) execution.

Each hardware wave has a set of registers that are shared by all lanes of the wave, termed scalar registers. There is
only one set of scalar registers for the whole wave. Instructions that act on the whole wave, which typically use scalar
registers, are termed scalar instructions.

Additionally, each wave also has a set of vector registers that are replicated so each lane has its own copy. A set of
vector registers can be viewed as a vector with each element of the vector belonging to the corresponding lane of the
wave. Instructions that act on vector registers, which produce independent results for each lane, are termed vector
instructions.

Each hardware wave has an execution mask that controls if the execution of a vector instruction should change the
state of a particular lane. If the lane is masked off, no changes are made for that lane and the instruction is effectively
ignored. The compiler generates code to update the execution mask which emulates independent work-item execution.
However, the lanes of a wave do not execute instructions independently. If two subsets of lanes in a wave need to
execute different code, the compiler will generate code to set the execution mask to execute the subset of lanes for one
path, then generate instructions for that path. The compiler will then generate code to change the execution mask to
enable the other subset of lanes, then generate code for those lanes. If both subsets of lanes execute the same code,
the compiler will generate code to set the execution mask to include both subsets of lanes, then generate code as usual.
When only a subset of lanes is enabled, they are said to be executing divergent control flow. When all lanes are enabled,
they are said to be executing wave uniform control flow.

Not all MEs have the hardware to execute kernel functions. One such ME is used to execute the HWS microcode and
to execute microcode that manages a service queue that is used to update GPU state. If the ME does support kernel
function execution it uses fixed-function hardware to initiate the creation of waves. This is accomplished by sending
requests to create workgroups to one or more Compute Units (CUs). Requests are sent to create all the workgroups of
a dispatch grid. Each CU has resources to hold a fixed number of waves and has fixed-function hardware to schedule
execution of these waves. The scheduler may execute multiple waves concurrently and will hide latency by switching
between the waves that are ready to execute. At any point of time, a subset of the waves belonging to workgroups in a
dispatch may be actively executing. As waves complete, the waves of subsequent workgroup requests are created.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

4 AMD Debugger API Specification

Each CU has a fixed amount of memory from which it allocates vector and scalar registers. The kernel descriptor
specifies how many registers to allocate for a wave. There is a tradeoff between how many waves can be created on a
CU and the number of registers each can use.

The CU also has a fixed size Local Data Store (LDS). A dispatch packet specifies how much LDS each workgroup is
allocated. All waves in a workgroup are created on the same CU. This allows the LDS to be used to share data between
the waves of the same workgroup. There is a tradeoff between how much LDS a workgroup can allocate, and the
number of workgroups that can fit on a CU. The address of a location in a workgroup LDS allocation is zero-based and
is a different address space than the global virtual memory. There are specific instructions that take an LDS address to
access it. There are also flat address instructions that map the LDS address range into an unused fixed aperture range
of the global virtual address range. An LDS address can be converted to or from a flat address by offsetting by the base
of the aperture. Note that a flat address in the LDS aperture only accesses the LDS workgroup allocation for the wave
that uses it. The same address will access different LDS allocations if used by waves in different workgroups.

The dispatch packet specifies the amount of scratch memory that must be allocated for a work-item. This is used for
work-item private memory. Fixed-function hardware in the CU manages per wave allocation of scratch memory from
pre-allocated global virtual memory mapped to GPU device memory. Like an LDS address, a scratch address is zero-
based, but is per work-item instead of per workgroup. It maps to an aperture in a flat address. The hardware swizzles
this address so that adjacent lanes access adjacent DWORDs (4 bytes) in global memory for better cache performance.

For an AMD Radeon Instinct™ MI60 GPU the workgroup size limit is 1,024 work-items, the wave size is 64, and the
CU count is 64. A CU can hold up to 40 waves (this is limited to 32 if using scratch memory). Therefore, a workgroup
can comprise between 1 and 16 waves inclusive, and there can be up to 2,560 waves, making a maximum of 163,840
work-items. A CU is organized as 4 Execution Units (EUs) also referred to as Single Instruction Multiple Data units
(SIMDs) that can each hold 10 waves. Each SIMD has 256 64-wide DWORD vector registers and each CU has 800
DWORD scalar registers. A single wave can access up to 256 64-wide vector registers and 112 scalar registers. A CU
has 64KiB of LDS.

1.3 Supported AMD GPU Architectures

The following AMD GPU architectures are supported:

• gfx900 (AMD Vega 10)

• gfx906 (AMD Vega 7nm also referred to as AMD Vega 20)

• gfx908 (AMD Instinct™ MI100 accelerator)

• gfx90a (Aldebaran)

• gfx942

• gfx950

• gfx1010 (Navi10)

• gfx1011 (Navi12)

• gfx1012 (Navi14)

• gfx1030 (Sienna Cichlid)

• gfx1031 (Navy Flounder)

• gfx1032 (Dimgrey Cavefish)

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

1.4 Known Limitations and Restrictions 5

• gfx1100 (Plum Bonito)

• gfx1101 (Wheat Nas)

• gfx1102 (Hotpink Bonefish)

• gfx1200

• gfx1201

The following generic AMD GPU architectures are supported:

• gfx9-generic

• gfx9-4-generic

• gfx10-1-generic

• gfx10-3-generic

• gfx11-generic

• gfx12-generic

For more information about the AMD ROCm ecosystem, please refer to:

• https://rocm.docs.amd.com/

1.4 Known Limitations and Restrictions

The AMD Debugger API library implementation currently has the following restrictions. Future releases aim to address
these restrictions.

1. The following ∗_get_info queries are not yet implemented:

• AMD_DBGAPI_QUEUE_INFO_ERROR_REASON

• AMD_DBGAPI_QUEUE_INFO_STATE

2. On a AMD_DBGAPI_STATUS_FATAL error the library does fully reset the internal state and so subsequent func-
tions may not operate correctly.

3. amd_dbgapi_process_next_pending_event returns AMD_DBGAPI_EVENT_KIND_WAVE_STOP events only for
AQL queues. PM4 queues that launch wavefronts are not supported.

4. amd_dbgapi_queue_packet_list returns packets only for AQL queues.

5. Generation of the AMD_DBGAPI_EVENT_KIND_QUEUE_ERROR event, the AMD_DBGAPI_EVENT_INFO_QUEUE
query, and the generation of AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED events for waves
with pending single step requests when a queue enters the queue error state, have not been implemented.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

https://rocm.docs.amd.com/

6 AMD Debugger API Specification

6. By default, for some architectures, the AMD GPU device driver for Linux causes all wavefronts created when
the library is not attached to the process by amd_dbgapi_process_attach to be unable to query the waves-
front's AMD_DBGAPI_WAVE_INFO_DISPATCH, AMD_DBGAPI_WAVE_INFO_WORKGROUP_COORD, or
AMD_DBGAPI_WAVE_INFO_WAVE_NUMBER_IN_WORKGROUP, or workgroup's AMD_DBGAPI_WORKGROUP_INFO_DISPATCH,
or AMD_DBGAPI_WORKGROUP_INFO_WORKGROUP_COORD. This does not affect wavefronts and work-
groups created while the library is attached to the process which are always capable of reporting this information.

If the HSA_ENABLE_DEBUG environment variable is set to "1" when the inferior's runtime is successfully enabled
(see AMD_DBGAPI_EVENT_KIND_RUNTIME), then this information will be available for all architecture even for
wavefronts created when the library was not attached to the process. Setting this environment variable may very
marginally reduce wavefront launch latency for some architectures for very short lived wavefronts.

See also

amd_dbgapi_wave_get_info

7. The AMD_DBGAPI_WAVE_STOP_REASON_FP_∗ and AMD_DBGAPI_WAVE_STOP_REASON_INT-∗ stop
reasons (see amd_dbgapi_wave_stop_reasons_t) are not reported for enabled arithmetic exceptions if the
DX10_CLAMP bit in the MODE register is set. This happens if the DX10_CLAMP kernel descriptor field is set.

8. The library does not support single root I/O virtualization (SR-IOV) on any AMD GPU architecture that supports
it. That includes gfx1030, gfx1031, and gfx1032.

9. The library does not support debugging programs that use cooperative groups or CU masking for gfx1100,
gfx1101, and gfx11102. A restriction will be reported when attaching to a process that has already created
cooperative group queues or CU masked queues. Any attempt by the process to create a cooperative queue or
CU masked queue when attached will fail.

10. On gfx1100, gfx1101 and gfx1102, the library cannot debug a program past a "s_sendmsg sendmsg(MSG_←↩

DEALLOC_VGPRS)" instruction. If an exception is delivered to a wave in an attached process after the wave has
executed this instruction, the wave is killed.

1.5 References

1. Advanced Micro Devices: [www.amd.com] (https://www.amd.com/)

2. AMD ROCm Ecosystem: [rocm.docs.amd.com] (https://rocm.docs.amd.com/)

3. Bus:Device.Function (BDF) Notation: [wiki.xen.org/wiki/Bus:Device.Function_(BDF)_Notation] (https←↩

://wiki.xen.org/wiki/Bus:Device.Function_(BDF)_Notation)

4. HSA Platform System Architecture Specification: [https://hsafoundation.com/wp-content/uploads/2021/02/←↩

HSA-SysArch-1.2.pdf] (https://hsafoundation.com/wp-content/uploads/2021/02/←↩

HSA-SysArch-1.2.pdf)

5. HSA Programmer's Reference Manual: [https://hsafoundation.com/wp-content/uploads/2021/02/←↩

HSA-PRM-1.2.pdf] (https://hsafoundation.com/wp-content/uploads/2021/02/←↩

HSA-PRM-1.2.pdf)

6. Semantic Versioning: [semver.org] (https://semver.org)

7. The LLVM Compiler Infrastructure: [llvm.org] (https://llvm.org/)

8. User Guide for AMDGPU LLVM Backend: [llvm.org/docs/AMDGPUUsage.html] (https://llvm.←↩

org/docs/AMDGPUUsage.html)

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

https://www.amd.com/
https://rocm.docs.amd.com/
https://wiki.xen.org/wiki/Bus:Device.Function_(BDF)_Notation
https://wiki.xen.org/wiki/Bus:Device.Function_(BDF)_Notation
https://hsafoundation.com/wp-content/uploads/2021/02/HSA-SysArch-1.2.pdf
https://hsafoundation.com/wp-content/uploads/2021/02/HSA-SysArch-1.2.pdf
https://hsafoundation.com/wp-content/uploads/2021/02/HSA-SysArch-1.2.pdf
https://hsafoundation.com/wp-content/uploads/2021/02/HSA-SysArch-1.2.pdf
https://hsafoundation.com/wp-content/uploads/2021/02/HSA-PRM-1.2.pdf
https://hsafoundation.com/wp-content/uploads/2021/02/HSA-PRM-1.2.pdf
https://hsafoundation.com/wp-content/uploads/2021/02/HSA-PRM-1.2.pdf
https://hsafoundation.com/wp-content/uploads/2021/02/HSA-PRM-1.2.pdf
https://semver.org
https://llvm.org/
https://llvm.org/docs/AMDGPUUsage.html
https://llvm.org/docs/AMDGPUUsage.html

1.6 Legal Disclaimer and Copyright Information 7

1.6 Legal Disclaimer and Copyright Information

AMD ROCm software is made available by Advanced Micro Devices, Inc. under the open source license identified in
the top-level directory for the library in the repository on Github.com (Portions of AMD ROCm software are licensed
under MITx11 and UIL/NCSA. For more information on the license, review the license.txt in the top-level directory
for the library on Github.com). The additional terms and conditions below apply to your use of AMD ROCm technical
documentation.

©2019-2024 Advanced Micro Devices, Inc. All rights reserved.

The information presented in this document is for informational purposes only and may contain technical inaccuracies,
omissions, and typographical errors. The information contained herein is subject to change and may be rendered
inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard
version changes, new model and/or product releases, product differences between differing manufacturers, software
changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that
cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this
information. However, AMD reserves the right to revise this information and to make changes from time to time to the
content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED "AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RE-
SPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS,
OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO
EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF
AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD Arrow logo, AMD Instinct™, Radeon™, AMD ROCm™, and combinations thereof are trademarks of Ad-
vanced Micro Devices, Inc. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries. PCIe®
is a registered trademark of PCI-SIG Corporation. Other product names used in this publication are for identification
purposes only and may be trademarks of their respective companies.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

https://github.com/
https://github.com/

8 AMD Debugger API Specification

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

Chapter 2

Topic Documentation

2.1 Symbol Versions

The names used for the shared library versioned symbols.

Macros

• #define AMD_DBGAPI_VERSION_0_54

The function was introduced in version 0.54 of the interface and has the symbol version string of "AMD_DBGAPI_0.54".

• #define AMD_DBGAPI_VERSION_0_56

The function was introduced in version 0.56 of the interface and has the symbol version string of "AMD_DBGAPI_0.56".

• #define AMD_DBGAPI_VERSION_0_58

The function was introduced in version 0.58 of the interface and has the symbol version string of "AMD_DBGAPI_0.58".

• #define AMD_DBGAPI_VERSION_0_62

The function was introduced in version 0.62 of the interface and has the symbol version string of "AMD_DBGAPI_0.62".

• #define AMD_DBGAPI_VERSION_0_64

The function was introduced in version 0.64 of the interface and has the symbol version string of "AMD_DBGAPI_0.64".

• #define AMD_DBGAPI_VERSION_0_67

The function was introduced in version 0.67 of the interface and has the symbol version string of "AMD_DBGAPI_0.67".

• #define AMD_DBGAPI_VERSION_0_68

The function was introduced in version 0.68 of the interface and has the symbol version string of "AMD_DBGAPI_0.68".

• #define AMD_DBGAPI_VERSION_0_70

The function was introduced in version 0.70 of the interface and has the symbol version string of "AMD_DBGAPI_0.70".

• #define AMD_DBGAPI_VERSION_0_76

The function was introduced in version 0.76 of the interface and has the symbol version string of "AMD_DBGAPI_0.76".

• #define AMD_DBGAPI_VERSION_0_77

The function was introduced in version 0.77 of the interface and has the symbol version string of "AMD_DBGAPI_0.77".

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

10 Topic Documentation

2.1.1 Detailed Description

The names used for the shared library versioned symbols.

Every function is annotated with one of the version macros defined in this section. Each macro specifies a corresponding
symbol version string. After dynamically loading the shared library with dlopen, the address of each function can be
obtained using dlvsym with the name of the function and its corresponding symbol version string. An error will be
reported by dlvsym if the installed library does not support the version for the function specified in this version of the
interface.

2.1.2 Macro Definition Documentation

2.1.2.1 AMD_DBGAPI_VERSION_0_54

#define AMD_DBGAPI_VERSION_0_54

The function was introduced in version 0.54 of the interface and has the symbol version string of "AMD_DBGAPI_←↩

0.54".

2.1.2.2 AMD_DBGAPI_VERSION_0_56

#define AMD_DBGAPI_VERSION_0_56

The function was introduced in version 0.56 of the interface and has the symbol version string of "AMD_DBGAPI_←↩

0.56".

2.1.2.3 AMD_DBGAPI_VERSION_0_58

#define AMD_DBGAPI_VERSION_0_58

The function was introduced in version 0.58 of the interface and has the symbol version string of "AMD_DBGAPI_←↩

0.58".

2.1.2.4 AMD_DBGAPI_VERSION_0_62

#define AMD_DBGAPI_VERSION_0_62

The function was introduced in version 0.62 of the interface and has the symbol version string of "AMD_DBGAPI_←↩

0.62".

2.1.2.5 AMD_DBGAPI_VERSION_0_64

#define AMD_DBGAPI_VERSION_0_64

The function was introduced in version 0.64 of the interface and has the symbol version string of "AMD_DBGAPI_←↩

0.64".

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.2 Basic Types 11

2.1.2.6 AMD_DBGAPI_VERSION_0_67

#define AMD_DBGAPI_VERSION_0_67

The function was introduced in version 0.67 of the interface and has the symbol version string of "AMD_DBGAPI_←↩

0.67".

2.1.2.7 AMD_DBGAPI_VERSION_0_68

#define AMD_DBGAPI_VERSION_0_68

The function was introduced in version 0.68 of the interface and has the symbol version string of "AMD_DBGAPI_←↩

0.68".

2.1.2.8 AMD_DBGAPI_VERSION_0_70

#define AMD_DBGAPI_VERSION_0_70

The function was introduced in version 0.70 of the interface and has the symbol version string of "AMD_DBGAPI_←↩

0.70".

2.1.2.9 AMD_DBGAPI_VERSION_0_76

#define AMD_DBGAPI_VERSION_0_76

The function was introduced in version 0.76 of the interface and has the symbol version string of "AMD_DBGAPI_←↩

0.76".

2.1.2.10 AMD_DBGAPI_VERSION_0_77

#define AMD_DBGAPI_VERSION_0_77

The function was introduced in version 0.77 of the interface and has the symbol version string of "AMD_DBGAPI_←↩

0.77".

2.2 Basic Types

Types used for common properties.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

12 Topic Documentation

Typedefs

• typedef uint64_t amd_dbgapi_global_address_t

Integral type used for a global virtual memory address in the inferior process.

• typedef uint64_t amd_dbgapi_size_t

Integral type used for sizes, including memory allocations, in the inferior.

• typedef pid_t amd_dbgapi_os_process_id_t

Native operating system process ID.

• typedef int amd_dbgapi_notifier_t

Type used to notify the client of the library that a process may have pending events.

• typedef uint64_t amd_dbgapi_os_agent_id_t

Native operating system agent ID.

• typedef uint64_t amd_dbgapi_os_queue_id_t

Native operating system queue ID.

• typedef uint64_t amd_dbgapi_os_queue_packet_id_t

Native operating system queue packet ID.

Enumerations

• enum amd_dbgapi_changed_t {
AMD_DBGAPI_CHANGED_NO = 0 ,
AMD_DBGAPI_CHANGED_YES = 1 }

Indication of if a value has changed.

• enum amd_dbgapi_os_queue_type_t {
AMD_DBGAPI_OS_QUEUE_TYPE_UNKNOWN = 0 ,
AMD_DBGAPI_OS_QUEUE_TYPE_HSA_AQL = 1 ,
AMD_DBGAPI_OS_QUEUE_TYPE_AMD_PM4 = 257 ,
AMD_DBGAPI_OS_QUEUE_TYPE_AMD_SDMA = 513 ,
AMD_DBGAPI_OS_QUEUE_TYPE_AMD_SDMA_XGMI = 514 }

Native operating system queue type.

2.2.1 Detailed Description

Types used for common properties.

Note that in some cases enumeration types are used as output parameters for functions using pointers. The C language
does not define the underlying type used for enumeration types. This interface requires that:

• For all enumeration types the underlying type used by the client will be int with a size of 32 bits.

In addition, it requires that enumeration types passed by value to functions, or returned as values from functions, will
have the platform function ABI representation.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.2 Basic Types 13

2.2.2 Typedef Documentation

2.2.2.1 amd_dbgapi_global_address_t

typedef uint64_t amd_dbgapi_global_address_t

Integral type used for a global virtual memory address in the inferior process.

2.2.2.2 amd_dbgapi_notifier_t

typedef int amd_dbgapi_notifier_t

Type used to notify the client of the library that a process may have pending events.

A notifier is created when amd_dbgapi_process_attach is used to successfully attach to a process. It is obtained using
the AMD_DBGAPI_PROCESS_INFO_NOTIFIER query. If the notifier indicates there may be pending events, then
amd_dbgapi_process_next_pending_event can be used to retrieve them. The same notifier may be returned when
attaching to different processes.

For Linux® this is a file descriptor number that can be used with the poll call to wait on events from multiple sources.
The file descriptor is made to have data available when events may be added to the pending events. The client can flush
the file descriptor and read the pending events until none are available. Note that the file descriptor may become ready
spuriously when no pending events are available, in which case the client should simply wait again. If new pending
events are added while reading the pending events, then the file descriptor will again have data available. The amount
of data on the file descriptor is not an indication of the number of pending events as the file may become full and so no
further data will be added. The file descriptor is simply a robust way to determine if there may be some pending events.

2.2.2.3 amd_dbgapi_os_agent_id_t

typedef uint64_t amd_dbgapi_os_agent_id_t

Native operating system agent ID.

This is the agent ID used by the operating system AMD GPU device driver that is executing the library to specify the
AMD GPU agents accessible to a process.

2.2.2.4 amd_dbgapi_os_process_id_t

typedef pid_t amd_dbgapi_os_process_id_t

Native operating system process ID.

This is the process ID used by the operating system that is executing the library. It is used in the implementation of the
library to interact with the operating system AMD GPU device driver.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

14 Topic Documentation

2.2.2.5 amd_dbgapi_os_queue_id_t

typedef uint64_t amd_dbgapi_os_queue_id_t

Native operating system queue ID.

This is the queue ID used by the operating system AMD GPU device driver that is executing the library to specify the
AMD GPU queues of a process.

2.2.2.6 amd_dbgapi_os_queue_packet_id_t

typedef uint64_t amd_dbgapi_os_queue_packet_id_t

Native operating system queue packet ID.

This is the queue packet ID used by the operating system AMD GPU device driver that is executing the library to specify
the AMD GPU packets of a queue of a process. The meaning of the queue packet ID is dependent on the queue type.
See amd_dbgapi_os_queue_type_t.

2.2.2.7 amd_dbgapi_size_t

typedef uint64_t amd_dbgapi_size_t

Integral type used for sizes, including memory allocations, in the inferior.

2.2.3 Enumeration Type Documentation

2.2.3.1 amd_dbgapi_changed_t

enum amd_dbgapi_changed_t

Indication of if a value has changed.

Enumerator

AMD_DBGAPI_CHANGED_NO The value has not changed.

AMD_DBGAPI_CHANGED_YES The value has changed.

2.2.3.2 amd_dbgapi_os_queue_type_t

enum amd_dbgapi_os_queue_type_t

Native operating system queue type.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.2 Basic Types 15

This is used by the operating system AMD GPU device driver that is executing the library to specify the AMD GPU
queue mechanics supported by the queues of a process.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

16 Topic Documentation

Enumerator

AMD_DBGAPI_OS_QUEUE_TYPE_UNKNOWN Unknown queue type.

AMD_DBGAPI_OS_QUEUE_TYPE_HSA_AQL Queue supports the HSA AQL protocol.

AMD_DBGAPI_OS_QUEUE_TYPE_AMD_PM4 Queue supports the AMD PM4 protocol.

AMD_DBGAPI_OS_QUEUE_TYPE_AMD_SDMA Queue supports the AMD SDMA protocol.

AMD_DBGAPI_OS_QUEUE_TYPE_AMD_SDMA_XGMI Queue supports the AMD SDMA XGMI protocol.

2.3 Status Codes

Most operations return a status code to indicate success or error.

Enumerations

• enum amd_dbgapi_status_t {
AMD_DBGAPI_STATUS_SUCCESS = 0 ,
AMD_DBGAPI_STATUS_ERROR = -1 ,
AMD_DBGAPI_STATUS_FATAL = -2 ,
AMD_DBGAPI_STATUS_ERROR_NOT_IMPLEMENTED = -3 ,
AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE = -4 ,
AMD_DBGAPI_STATUS_ERROR_NOT_SUPPORTED = -5 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT = -6 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITY = -7 ,
AMD_DBGAPI_STATUS_ERROR_ALREADY_INITIALIZED = -8 ,
AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED = -9 ,
AMD_DBGAPI_STATUS_ERROR_RESTRICTION = -10 ,
AMD_DBGAPI_STATUS_ERROR_ALREADY_ATTACHED = -11 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_ARCHITECTURE_ID = -12 ,
AMD_DBGAPI_STATUS_ERROR_ILLEGAL_INSTRUCTION = -13 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_CODE_OBJECT_ID = -14 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_ELF_AMDGPU_MACHINE = -15 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_ID = -16 ,
AMD_DBGAPI_STATUS_ERROR_PROCESS_EXITED = -17 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_AGENT_ID = -18 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_QUEUE_ID = -19 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_DISPATCH_ID = -20 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID = -21 ,
AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_STOPPED = -22 ,
AMD_DBGAPI_STATUS_ERROR_WAVE_STOPPED = -23 ,
AMD_DBGAPI_STATUS_ERROR_WAVE_OUTSTANDING_STOP = -24 ,
AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_RESUMABLE = -25 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_DISPLACED_STEPPING_ID = -26 ,
AMD_DBGAPI_STATUS_ERROR_DISPLACED_STEPPING_BUFFER_NOT_AVAILABLE = -27 ,
AMD_DBGAPI_STATUS_ERROR_DISPLACED_STEPPING_ACTIVE = -28 ,
AMD_DBGAPI_STATUS_ERROR_RESUME_DISPLACED_STEPPING = -29 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_WATCHPOINT_ID = -30 ,
AMD_DBGAPI_STATUS_ERROR_NO_WATCHPOINT_AVAILABLE = -31 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_REGISTER_CLASS_ID = -32 ,

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.3 Status Codes 17

AMD_DBGAPI_STATUS_ERROR_INVALID_REGISTER_ID = -33 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_LANE_ID = -34 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_CLASS_ID = -35 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_SPACE_ID = -36 ,
AMD_DBGAPI_STATUS_ERROR_MEMORY_ACCESS = -37 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_SPACE_CONVERSION = -38 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_EVENT_ID = -39 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_BREAKPOINT_ID = -40 ,
AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK = -41 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_CLIENT_PROCESS_ID = -42 ,
AMD_DBGAPI_STATUS_ERROR_SYMBOL_NOT_FOUND = -43 ,
AMD_DBGAPI_STATUS_ERROR_REGISTER_NOT_AVAILABLE = -44 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_WORKGROUP_ID = -45 ,
AMD_DBGAPI_STATUS_ERROR_INCOMPATIBLE_PROCESS_STATE = -46 ,
AMD_DBGAPI_STATUS_ERROR_PROCESS_FROZEN = -47 ,
AMD_DBGAPI_STATUS_ERROR_PROCESS_ALREADY_FROZEN = -48 ,
AMD_DBGAPI_STATUS_ERROR_PROCESS_NOT_FROZEN = -49 }

AMD debugger API status codes.

Functions

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_get_status_string (amd_dbgapi_status_t status, const char
∗∗status_string) AMD_DBGAPI_VERSION_0_54

Query a textual description of a status code.

2.3.1 Detailed Description

Most operations return a status code to indicate success or error.

2.3.2 Enumeration Type Documentation

2.3.2.1 amd_dbgapi_status_t

enum amd_dbgapi_status_t

AMD debugger API status codes.

Enumerator

AMD_DBGAPI_STATUS_SUCCESS The function has executed successfully.

AMD_DBGAPI_STATUS_ERROR A generic error has occurred.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

18 Topic Documentation

Enumerator

AMD_DBGAPI_STATUS_FATAL A fatal error has occurred. The library encountered an
error from which it cannot recover. All processes are
detached. All breakpoints inserted by
amd_dbgapi_callbacks_s::insert_breakpoint are
attempted to be removed. All handles are invalidated.
The library is left in an uninitialized state. The logging
level is reset to AMD_DBGAPI_LOG_LEVEL_NONE.
To resume using the library the client must re-initialize
the library; re-attach to any processes; re-fetch the list
of code objects, agents, queues, dispatches, and
waves; and update the state of all waves as appropriate.
While in the uninitialized state the inferior processes will
continue executing but any execution of a breakpoint
instruction will put the queue into an error state,
aborting any executing waves. Note that recovering
from a fatal error most likely will require the user of the
client to re-start their session.
The cause of possible fatal errors is that resources
became exhausted or unique handle numbers became
exhausted.

AMD_DBGAPI_STATUS_ERROR_NOT_←↩

IMPLEMENTED
The operation is not currently implemented. This error
may be reported by any function. Check the
Known Limitations and Restrictions section to determine
the status of the library implementation of the interface.

AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE The requested information is not available.

AMD_DBGAPI_STATUS_ERROR_NOT_SUPPORTED The operation is not supported.

AMD_DBGAPI_STATUS_ERROR_INVALID_←↩

ARGUMENT
An invalid argument was given to the function.

AMD_DBGAPI_STATUS_ERROR_INVALID_←↩

ARGUMENT_COMPATIBILITY
An invalid combination of arguments was given to the
function.

AMD_DBGAPI_STATUS_ERROR_ALREADY_←↩

INITIALIZED
The library is already initialized.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.3 Status Codes 19

Enumerator

AMD_DBGAPI_STATUS_ERROR_RESTRICTION There is a restriction error that prevents the operation to
complete. Reasons which could prevent debugging the
process include:

• The AMD GPU driver is not installed.

• The installed AMD GPU driver version is not
compatible with the library.

• The installed AMD GPU driver's debug support
version is not compatible with the library.

• A limitation on the number of debuggers that can
be active for an AMD GPU agent has been
exceeded.

• The process has the same address space as
another process to which the library is already
attached. For example, attaching to a process
created by the Linux vfork system call while
attached to the parent process.

On some configurations, this error is returned instead of
creating a core dump containing an ambiguous state.

AMD_DBGAPI_STATUS_ERROR_ALREADY_←↩

ATTACHED
The process is already attached to the given inferior
process.

AMD_DBGAPI_STATUS_ERROR_INVALID_←↩

ARCHITECTURE_ID
The architecture handle is invalid.

AMD_DBGAPI_STATUS_ERROR_ILLEGAL_←↩

INSTRUCTION
The bytes being disassembled are not a legal
instruction.

AMD_DBGAPI_STATUS_ERROR_INVALID_CODE_←↩

OBJECT_ID
The code object handle is invalid.

AMD_DBGAPI_STATUS_ERROR_INVALID_ELF_←↩

AMDGPU_MACHINE
The ELF AMD GPU machine value is invalid or
unsupported.

AMD_DBGAPI_STATUS_ERROR_INVALID_←↩

PROCESS_ID
The process handle is invalid.

AMD_DBGAPI_STATUS_ERROR_PROCESS_EXITED The native operating system process associated with a
client process has exited.

AMD_DBGAPI_STATUS_ERROR_INVALID_AGENT←↩

_ID
The agent handle is invalid.

AMD_DBGAPI_STATUS_ERROR_INVALID_QUEUE←↩

_ID
The queue handle is invalid.

AMD_DBGAPI_STATUS_ERROR_INVALID_←↩

DISPATCH_ID
The dispatch handle is invalid.

AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID The wave handle is invalid.
AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_←↩

STOPPED
The wave is not stopped.

AMD_DBGAPI_STATUS_ERROR_WAVE_STOPPED The wave is stopped.

AMD_DBGAPI_STATUS_ERROR_WAVE_←↩

OUTSTANDING_STOP
The wave has an outstanding stop request.

AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_←↩

RESUMABLE
The wave cannot be resumed.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

20 Topic Documentation

Enumerator

AMD_DBGAPI_STATUS_ERROR_INVALID_←↩

DISPLACED_STEPPING_ID
The displaced stepping handle is invalid.

AMD_DBGAPI_STATUS_ERROR_DISPLACED_←↩

STEPPING_BUFFER_NOT_AVAILABLE
No more displaced stepping buffers are available that
are suitable for the requested wave.

AMD_DBGAPI_STATUS_ERROR_DISPLACED_←↩

STEPPING_ACTIVE
The wave has an active displaced stepping buffer.

AMD_DBGAPI_STATUS_ERROR_RESUME_←↩

DISPLACED_STEPPING
The wave cannot be resumed in the manner requested
due to displaced stepping restrictions.

AMD_DBGAPI_STATUS_ERROR_INVALID_←↩

WATCHPOINT_ID
The watchpoint handle is invalid.

AMD_DBGAPI_STATUS_ERROR_NO_←↩

WATCHPOINT_AVAILABLE
No more watchpoints available.

AMD_DBGAPI_STATUS_ERROR_INVALID_←↩

REGISTER_CLASS_ID
The register class handle is invalid.

AMD_DBGAPI_STATUS_ERROR_INVALID_←↩

REGISTER_ID
The register handle is invalid.

AMD_DBGAPI_STATUS_ERROR_INVALID_LANE_ID The lane handle is invalid.
AMD_DBGAPI_STATUS_ERROR_INVALID_←↩

ADDRESS_CLASS_ID
The address class handle is invalid.

AMD_DBGAPI_STATUS_ERROR_INVALID_←↩

ADDRESS_SPACE_ID
The address space handle is invalid.

AMD_DBGAPI_STATUS_ERROR_MEMORY_ACCESS
An error occurred while trying to access memory in the
inferior.

AMD_DBGAPI_STATUS_ERROR_INVALID_←↩

ADDRESS_SPACE_CONVERSION
The segment address cannot be converted to the
requested address space.

AMD_DBGAPI_STATUS_ERROR_INVALID_EVENT_ID
The event handle is invalid.

AMD_DBGAPI_STATUS_ERROR_INVALID_←↩

BREAKPOINT_ID
The breakpoint handle is invalid.

AMD_DBGAPI_STATUS_ERROR_CLIENT_←↩

CALLBACK
A callback to the client reported an error.

AMD_DBGAPI_STATUS_ERROR_INVALID_CLIENT←↩

_PROCESS_ID
The client process handle is invalid.

AMD_DBGAPI_STATUS_ERROR_SYMBOL_NOT_←↩

FOUND
The symbol was not found.

AMD_DBGAPI_STATUS_ERROR_REGISTER_NOT←↩

_AVAILABLE
The register handle is valid, but specifies a register that
is not allocated in the associated wave.

AMD_DBGAPI_STATUS_ERROR_INVALID_←↩

WORKGROUP_ID
The workgroup handle is invalid.

AMD_DBGAPI_STATUS_ERROR_INCOMPATIBLE_←↩

PROCESS_STATE
The current process state is not compatible with the
requested operation.

AMD_DBGAPI_STATUS_ERROR_PROCESS_←↩

FROZEN
This operation is not allowed when the process is
frozen.

AMD_DBGAPI_STATUS_ERROR_PROCESS_←↩

ALREADY_FROZEN
The process is already frozen.

AMD_DBGAPI_STATUS_ERROR_PROCESS_NOT←↩

_FROZEN
This operation is not allowed when the process is not
frozen.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.4 Versioning 21

2.3.3 Function Documentation

2.3.3.1 amd_dbgapi_get_status_string()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_get_status_string (

amd_dbgapi_status_t status,

const char ∗∗ status_string)

Query a textual description of a status code.

This function can be used even when the library is uninitialized.

Parameters

in status Status code.
out status_string A NUL terminated string that describes the status code. The string is read only and owned

by the library.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully.
status_string has been updated.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT status is an invalid status code or status_string
is NULL. status_string is unaltered.

2.4 Versioning

Version information about the interface and the associated installed library.

Macros

• #define AMD_DBGAPI_VERSION_MAJOR 0

The semantic version of the interface following [semver.org][semver] rules.

• #define AMD_DBGAPI_VERSION_MINOR 77

The minor version of the interface as a macro so it can be used by the preprocessor.

Functions

• void AMD_DBGAPI amd_dbgapi_get_version (uint32_t ∗major, uint32_t ∗minor, uint32_t ∗patch) AMD_DBGAPI_VERSION_0_54

Query the version of the installed library.

• const char AMD_DBGAPI ∗ amd_dbgapi_get_build_name (void) AMD_DBGAPI_VERSION_0_54

Query the installed library build name.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

22 Topic Documentation

2.4.1 Detailed Description

Version information about the interface and the associated installed library.

2.4.2 Macro Definition Documentation

2.4.2.1 AMD_DBGAPI_VERSION_MAJOR

#define AMD_DBGAPI_VERSION_MAJOR 0

The semantic version of the interface following [semver.org][semver] rules.

A client that uses this interface is only compatible with the installed library if the major version numbers match and the
interface minor version number is less than or equal to the installed library minor version number. The major version of
the interface as a macro so it can be used by the preprocessor.

2.4.2.2 AMD_DBGAPI_VERSION_MINOR

#define AMD_DBGAPI_VERSION_MINOR 77

The minor version of the interface as a macro so it can be used by the preprocessor.

2.4.3 Function Documentation

2.4.3.1 amd_dbgapi_get_build_name()

const char AMD_DBGAPI ∗ amd_dbgapi_get_build_name (

void)

Query the installed library build name.

This function can be used even when the library is not initialized.

Returns

Returns a string describing the build version of the library. The string is owned by the library.

2.4.3.2 amd_dbgapi_get_version()

void AMD_DBGAPI amd_dbgapi_get_version (

uint32_t ∗ major,

uint32_t ∗ minor,

uint32_t ∗ patch)

Query the version of the installed library.

Return the version of the installed library. This can be used to check if it is compatible with this interface version. This
function can be used even when the library is not initialized.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.5 Initialization and Finalization 23

Parameters

out major The major version number is stored if non-NULL.

out minor The minor version number is stored if non-NULL.
out patch The patch version number is stored if non-NULL.

2.5 Initialization and Finalization

Operations to control initializing and finalizing the library.

Functions

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_initialize (amd_dbgapi_callbacks_t ∗callbacks) AMD_DBGAPI_VERSION_0_76

Initialize the library.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_finalize (void) AMD_DBGAPI_VERSION_0_54

Finalize the library.

2.5.1 Detailed Description

Operations to control initializing and finalizing the library.

When the library is first loaded it is in the uninitialized state. Before any operation can be used, the library must be
initialized. The exception is the status operation in Status Codes and the version operations in Versioning which can be
used regardless of whether the library is initialized.

2.5.2 Function Documentation

2.5.2.1 amd_dbgapi_finalize()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_finalize (

void)

Finalize the library.

Finalizing the library invalidates all handles previously returned by any operation. It is undefined to use any such handle
even if the library is subsequently initialized with amd_dbgapi_initialize. Finalizing the library implicitly detaches from
any processes currently attached. It is allowed to initialize and finalize the library multiple times. Finalizing the library
does not changed the logging level (see Logging).

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
library is now uninitialized.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if any of the
amd_dbgapi_callbacks_s callbacks used return an
error. The library is still left uninitialized, but the client
may be in an inconsistent state.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

24 Topic Documentation

2.5.2.2 amd_dbgapi_initialize()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_initialize (

amd_dbgapi_callbacks_t ∗ callbacks)

Initialize the library.

Initialize the library so that the library functions can be used to control the AMD GPU devices accessed by processes.

Initializing the library does not change the logging level (see Logging).

Parameters

in callbacks A set of callbacks must be provided. These are invoked by certain operations. They are
described in amd_dbgapi_callbacks_t.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
library is now initialized.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library remains uninitialized.

AMD_DBGAPI_STATUS_ERROR_ALREADY_INITIALIZEDThe library is already initialized. The library is left
initialized and the callbacks are not changed.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT callbacks is NULL or has fields that are NULL. The
library remains uninitialized.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if any of the
amd_dbgapi_callbacks_s callbacks used return an
error. The library remains uninitialized.

2.6 Architectures

Operations related to AMD GPU architectures.

Data Structures

• struct amd_dbgapi_architecture_id_t

Opaque architecture handle.

Macros

• #define AMD_DBGAPI_ARCHITECTURE_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_architecture_id_t,
0)

The NULL architecture handle.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.6 Architectures 25

Typedefs

• typedef struct amd_dbgapi_symbolizer_id_s ∗ amd_dbgapi_symbolizer_id_t

Opaque client symbolizer handle.

Enumerations

• enum amd_dbgapi_architecture_info_t {
AMD_DBGAPI_ARCHITECTURE_INFO_NAME = 1 ,
AMD_DBGAPI_ARCHITECTURE_INFO_ELF_AMDGPU_MACHINE = 2 ,
AMD_DBGAPI_ARCHITECTURE_INFO_LARGEST_INSTRUCTION_SIZE = 3 ,
AMD_DBGAPI_ARCHITECTURE_INFO_MINIMUM_INSTRUCTION_ALIGNMENT = 4 ,
AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION_SIZE = 5 ,
AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION = 6 ,
AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION_PC_ADJUST = 7 ,
AMD_DBGAPI_ARCHITECTURE_INFO_PC_REGISTER = 8 }

Architecture queries that are supported by amd_dbgapi_architecture_get_info.

• enum amd_dbgapi_instruction_kind_t {
AMD_DBGAPI_INSTRUCTION_KIND_UNKNOWN = 0 ,
AMD_DBGAPI_INSTRUCTION_KIND_SEQUENTIAL = 1 ,
AMD_DBGAPI_INSTRUCTION_KIND_DIRECT_BRANCH = 2 ,
AMD_DBGAPI_INSTRUCTION_KIND_DIRECT_BRANCH_CONDITIONAL = 3 ,
AMD_DBGAPI_INSTRUCTION_KIND_INDIRECT_BRANCH_REGISTER_PAIR = 4 ,
AMD_DBGAPI_INSTRUCTION_KIND_INDIRECT_BRANCH_CONDITIONAL_REGISTER_PAIR = 5 ,
AMD_DBGAPI_INSTRUCTION_KIND_DIRECT_CALL_REGISTER_PAIR = 6 ,
AMD_DBGAPI_INSTRUCTION_KIND_INDIRECT_CALL_REGISTER_PAIRS = 7 ,
AMD_DBGAPI_INSTRUCTION_KIND_TERMINATE = 8 ,
AMD_DBGAPI_INSTRUCTION_KIND_TRAP = 9 ,
AMD_DBGAPI_INSTRUCTION_KIND_HALT = 10 ,
AMD_DBGAPI_INSTRUCTION_KIND_BARRIER = 11 ,
AMD_DBGAPI_INSTRUCTION_KIND_SLEEP = 12 ,
AMD_DBGAPI_INSTRUCTION_KIND_SPECIAL = 13 }

The kinds of instruction classifications.

• enum amd_dbgapi_instruction_properties_t { AMD_DBGAPI_INSTRUCTION_PROPERTY_NONE = 0 }

A bit mask of the properties of an instruction.

Functions

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_get_info (amd_dbgapi_architecture_id_t
architecture_id, amd_dbgapi_architecture_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_54

Query information about an architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_get_architecture (uint32_t elf_amdgpu_machine, amd_dbgapi_architecture_id_t
∗architecture_id) AMD_DBGAPI_VERSION_0_54

Get an architecture from the AMD GPU ELF EF_AMDGPU_MACH value corresponding to the architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_disassemble_instruction (amd_dbgapi_architecture_id_t
architecture_id, amd_dbgapi_global_address_t address, amd_dbgapi_size_t ∗size, const void ∗memory, char
∗∗instruction_text, amd_dbgapi_symbolizer_id_t symbolizer_id, amd_dbgapi_status_t(∗symbolizer)(amd_dbgapi_symbolizer_id_t
symbolizer_id, amd_dbgapi_global_address_t address, char ∗∗symbol_text)) AMD_DBGAPI_VERSION_0_54

Disassemble a single instruction.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

26 Topic Documentation

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_classify_instruction (amd_dbgapi_architecture_id_t architecture←↩

_id, amd_dbgapi_global_address_t address, amd_dbgapi_size_t ∗size, const void ∗memory, amd_dbgapi_instruction_kind_t
∗instruction_kind, amd_dbgapi_instruction_properties_t ∗instruction_properties, void ∗∗instruction_information)
AMD_DBGAPI_VERSION_0_58

Classify a single instruction.

2.6.1 Detailed Description

Operations related to AMD GPU architectures.

The library supports a family of AMD GPU devices. Each device has its own architectural properties. The operations in
this section provide information about the supported architectures.

2.6.2 Macro Definition Documentation

2.6.2.1 AMD_DBGAPI_ARCHITECTURE_NONE

#define AMD_DBGAPI_ARCHITECTURE_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_architecture_id_t, 0)

The NULL architecture handle.

2.6.3 Typedef Documentation

2.6.3.1 amd_dbgapi_symbolizer_id_t

typedef struct amd_dbgapi_symbolizer_id_s∗ amd_dbgapi_symbolizer_id_t

Opaque client symbolizer handle.

A pointer to client data associated with a symbolizer. This pointer is passed to the amd_dbgapi_disassemble_instruction
symbolizer callback.

2.6.4 Enumeration Type Documentation

2.6.4.1 amd_dbgapi_architecture_info_t

enum amd_dbgapi_architecture_info_t

Architecture queries that are supported by amd_dbgapi_architecture_get_info.

Each query specifies the type of data returned in the value argument to amd_dbgapi_architecture_get_info.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.6 Architectures 27

Enumerator

AMD_DBGAPI_ARCHITECTURE_INFO_NAME Return the architecture name. The type of this attribute
is a pointer to a NUL terminated char∗. It is allocated
by the amd_dbgapi_callbacks_s::allocate_memory
callback and is owned by the client.

AMD_DBGAPI_ARCHITECTURE_INFO_ELF_←↩

AMDGPU_MACHINE
Return the AMD GPU ELF EF_AMDGPU_MACH value
corresponding to the architecture. This is defined as a
bit field in the e_flags AMD GPU ELF header. See
[User Guide for AMDGPU Backend - Code Object -
Header] (https://llvm.org/docs/←↩

AMDGPUUsage.html#header). The type of this
attribute is uint32_t.

AMD_DBGAPI_ARCHITECTURE_INFO_LARGEST←↩

_INSTRUCTION_SIZE
Return the largest instruction size in bytes for the
architecture. The type of this attribute is
amd_dbgapi_size_t.

AMD_DBGAPI_ARCHITECTURE_INFO_MINIMUM_←↩

INSTRUCTION_ALIGNMENT
Return the minimum instruction alignment in bytes for
the architecture. The returned value will be a power of
two. The type of this attribute is amd_dbgapi_size_t.

AMD_DBGAPI_ARCHITECTURE_INFO_←↩

BREAKPOINT_INSTRUCTION_SIZE
Return the breakpoint instruction size in bytes for the
architecture. The type of this attribute is
amd_dbgapi_size_t.

AMD_DBGAPI_ARCHITECTURE_INFO_←↩

BREAKPOINT_INSTRUCTION
Return the breakpoint instruction for the architecture.
The type of this attribute is pointer to N bytes where N is
the value returned by the
AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION_SIZE
query. It is allocated by the
amd_dbgapi_callbacks_s::allocate_memory callback
and is owned by the client.

AMD_DBGAPI_ARCHITECTURE_INFO_←↩

BREAKPOINT_INSTRUCTION_PC_ADJUST
Return the number of bytes to subtract from the PC
after stopping due to a breakpoint instruction to get the
address of the breakpoint instruction for the architecture.
The type of this attribute is amd_dbgapi_size_t.

AMD_DBGAPI_ARCHITECTURE_INFO_PC_←↩

REGISTER
Return the register handle for the PC for the
architecture. The type of this attribute is
amd_dbgapi_register_id_t.

2.6.4.2 amd_dbgapi_instruction_kind_t

enum amd_dbgapi_instruction_kind_t

The kinds of instruction classifications.

Enumerator

AMD_DBGAPI_INSTRUCTION_KIND_UNKNOWN The instruction classification is unknown. The
instruction has no information.

AMD_DBGAPI_INSTRUCTION_KIND_SEQUENTIAL The instruction executes sequentially. It performs no
control flow and the next instruction executed is the
following one. The instruction has no information.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

https://llvm.org/docs/AMDGPUUsage.html#header
https://llvm.org/docs/AMDGPUUsage.html#header

28 Topic Documentation

Enumerator

AMD_DBGAPI_INSTRUCTION_KIND_DIRECT_←↩

BRANCH
The instruction unconditionally branches to a literal
address. The instruction information is of type
amd_dbgapi_global_address_t with the value of the
target address of the branch.

AMD_DBGAPI_INSTRUCTION_KIND_DIRECT_←↩

BRANCH_CONDITIONAL
The instruction conditionally branches to a literal
address. If the condition is not satisfied then the next
instruction is the following one. The instruction
information is of type amd_dbgapi_global_address_t
with the value of the target address of the branch if
taken.

AMD_DBGAPI_INSTRUCTION_KIND_INDIRECT_←↩

BRANCH_REGISTER_PAIR
The instruction unconditionally branches to an address
held in a pair of registers. The instruction information is
of type amd_dbgapi_register_id_t[2] with the value of
the register IDs for the registers. The first register holds
the least significant address bits, and the second
register holds the most significant address bits.

AMD_DBGAPI_INSTRUCTION_KIND_INDIRECT_←↩

BRANCH_CONDITIONAL_REGISTER_PAIR
The instruction conditionally branches to an address
held in a pair of registers. If the condition is not satisfied
then the next instruction is the following one. The
instruction information is of type
amd_dbgapi_register_id_t[2] with the value of the
register IDs for the registers holding the value of the
target address of the branch if taken. The register with
index 0 holds the least significant address bits, and the
register with index 1 holds the most significant address
bits.

AMD_DBGAPI_INSTRUCTION_KIND_DIRECT_←↩

CALL_REGISTER_PAIR
The instruction unconditionally branches to a literal
address and the address of the following instruction is
saved in a pair of registers. The instruction information
is of type
amd_dbgapi_direct_call_register_pair_information_t
with the value of the target address of the call followed
by the value of the saved return address register IDs.
The saved return address register with index 0 holds the
least significant address bits, and the register with index
1 holds the most significant address bits.

AMD_DBGAPI_INSTRUCTION_KIND_INDIRECT_←↩

CALL_REGISTER_PAIRS
The instruction unconditionally branches to an address
held in a pair of source registers and the address of the
following instruction is saved in a pair of destination
registers. The instruction information is of type
amd_dbgapi_register_id_t[4] with the source register
IDs in indices 0 and 1, and the destination register IDs in
indices 2 and 3. The registers with indices 0 and 2 hold
the least significant address bits, and the registers with
indices 1 and 3 hold the most significant address bits.

AMD_DBGAPI_INSTRUCTION_KIND_TERMINATE The instruction terminates the wave execution. The
instruction has no information.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.6 Architectures 29

Enumerator

AMD_DBGAPI_INSTRUCTION_KIND_TRAP The instruction enters the trap handler. The trap handler
may return to resume execution, may put the wave into
the halt state and create an event for
amd_dbgapi_process_next_pending_event to report, or
may terminate the wave. The library cannot report
execution in the trap handler. If single stepping the trap
instruction reports the
AMD_DBGAPI_WAVE_STOP_REASON_SINGLE_STEP
reason, then the program counter will be at the
instruction following the trap instruction, it will not be at
the first instruction of the trap handler. It is undefined to
set a breakpoint in the trap handler, and will likely cause
the inferior to report errors and stop executing correctly.
The instruction information is of type uint64_t with
the value of the trap code.

AMD_DBGAPI_INSTRUCTION_KIND_HALT The instruction unconditionally halts the wave. The
instruction has no information.

AMD_DBGAPI_INSTRUCTION_KIND_BARRIER The instruction performs some kind of execution barrier
which may result in the wave being halted until other
waves allow it to continue. Such instructions include
wave execution barriers, wave synchronization barriers,
and wave semaphores. The instruction has no
information.

AMD_DBGAPI_INSTRUCTION_KIND_SLEEP The instruction causes the wave to stop executing for
some period of time, before continuing execution with
the next instruction. The instruction has no information.

AMD_DBGAPI_INSTRUCTION_KIND_SPECIAL The instruction has some form of special behavior not
covered by any of the other instruction kinds. This likely
makes it unsuitable to assume it will execute
sequentially. This may include instructions that can
affect the execution of other waves waiting at wave
synchronization barriers, that may send interrupts, and
so forth. The instruction has no information.

2.6.4.3 amd_dbgapi_instruction_properties_t

enum amd_dbgapi_instruction_properties_t

A bit mask of the properties of an instruction.

Enumerator

AMD_DBGAPI_INSTRUCTION_PROPERTY_NONE The instruction has no properties.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

30 Topic Documentation

2.6.5 Function Documentation

2.6.5.1 amd_dbgapi_architecture_get_info()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_get_info (

amd_dbgapi_architecture_id_t architecture_id,

amd_dbgapi_architecture_info_t query,

size_t value_size,

void ∗ value)

Query information about an architecture.

amd_dbgapi_architecture_info_t specifies the queries supported and the type returned using the value argument.

Parameters

in architecture←↩

_id
The architecture being queried.

in query The query being requested.

in value_size Size of the memory pointed to by value. Must be equal to the byte size of the query result.

out value Pointer to memory where the query result is stored.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in value.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARCHITECTURE_IDarchitecture_id is invalid. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT value is NULL or query is invalid. value is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYvalue_size does not match the size of the query
result. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate value returns NULL. value is
unaltered.

2.6.5.2 amd_dbgapi_classify_instruction()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_classify_instruction (

amd_dbgapi_architecture_id_t architecture_id,

amd_dbgapi_global_address_t address,

amd_dbgapi_size_t ∗ size,

const void ∗ memory,

amd_dbgapi_instruction_kind_t ∗ instruction_kind,

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.6 Architectures 31

amd_dbgapi_instruction_properties_t ∗ instruction_properties,

void ∗∗ instruction_information)

Classify a single instruction.

Parameters

in architecture_id The architecture to use to perform the classification.

in address The address of the first byte of the instruction.

in,out size Pass in the number of bytes available in memory which must be greater
than 0. Return the number of bytes consumed to decode the instruction.

in memory The bytes to decode as an instruction. Must point to an array of at least
size bytes. The
AMD_DBGAPI_ARCHITECTURE_INFO_LARGEST_INSTRUCTION_SIZE
query for architecture_id can be used to determine the number of
bytes of the largest instruction. By making size at least this size ensures
that the instruction can be decoded if legal. However, size may need to be
smaller if no memory exists at the address of address plus size.

out instruction_kind The classification kind of the instruction.
out instruction_properties Pointer to the instruction properties. amd_dbgapi_instruction_properties_t

defines the type of the instruction properties. If NULL, no value is returned.

out instruction_information Pointer to the instruction information that corresponds to the value of
instruction_kind. amd_dbgapi_instruction_kind_t defines the type
of the instruction information for each instruction kind value. If the
instruction has no information then NULL is returned. The memory is
allocated using the amd_dbgapi_callbacks_s::allocate_memory callback
and is owned by the client. If NULL, no value is returned.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully; and the
result is stored in instruction_kind,
instruction_properties, and
instruction_information.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized;
and size, instruction_kind,
instruction_properties, and
instruction_information are unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized; and size, instruction_kind,
instruction_properties, and
instruction_information are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARCHITECTURE_IDarchitecture_id is invalid. size,
instruction_kind,
instruction_properties, and
instruction_information are unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

32 Topic Documentation

Return values

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT size, memory, or instruction_kind are NULL,
size is 0, or address is not aligned on the value
returned by the
AMD_DBGAPI_ARCHITECTURE_INFO_MINIMUM_INSTRUCTION_ALIGNMENT
query. size, instruction_kind,
instruction_properties, and
instruction_information are unaltered.

AMD_DBGAPI_STATUS_ERROR Encountered an error disassembling the instruction.
The bytes may or may not be a legal instruction. size,
instruction_kind,
instruction_properties, and
instruction_information are unaltered.

AMD_DBGAPI_STATUS_ERROR_ILLEGAL_INSTRUCTIONThe bytes starting at address, when up to size
bytes are available, are not a legal instruction for the
architecture. size, instruction_kind,
instruction_properties, and
instruction_information are unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate instruction_text and
address_operands returns NULL. size,
instruction_kind,
instruction_properties, and
instruction_information are unaltered.

2.6.5.3 amd_dbgapi_disassemble_instruction()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_disassemble_instruction (

amd_dbgapi_architecture_id_t architecture_id,

amd_dbgapi_global_address_t address,

amd_dbgapi_size_t ∗ size,

const void ∗ memory,

char ∗∗ instruction_text,

amd_dbgapi_symbolizer_id_t symbolizer_id,

amd_dbgapi_status_t(∗)(amd_dbgapi_symbolizer_id_t symbolizer_id, amd_dbgapi_global_address_t

address, char ∗∗symbol_text) symbolizer)

Disassemble a single instruction.

Parameters

in architecture←↩

_id
The architecture to use to perform the disassembly.

in address The address of the first byte of the instruction.

in,out size Pass in the number of bytes available in memory which must be greater than 0.
Return the number of bytes consumed to decode the instruction.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.6 Architectures 33

Parameters

in memory The bytes to decode as an instruction. Must point to an array of at least size
bytes. The
AMD_DBGAPI_ARCHITECTURE_INFO_LARGEST_INSTRUCTION_SIZE query
for architecture_id can be used to determine the number of bytes of the
largest instruction. By making size at least this size ensures that the instruction
can be decoded if legal. However, size may need to be smaller if no memory
exists at the address of address plus size.

out instruction_text If NULL then only the instruction size is returned.

If non-NULL then set to a pointer to a NUL terminated string that contains the disassembled textual representation of
the instruction. The memory is allocated using the amd_dbgapi_callbacks_s::allocate_memory callback and is owned
by the client.

Parameters

in symbolizer←↩

_id
The client handle that is passed to any invocation of the symbolizer callback made
while disassembling the instruction.

in symbolizer A callback that is invoked for any operand of the disassembled instruction that is a memory
address. It allows the client to provide a symbolic representation of the address as a
textual symbol that will be used in the returned instruction_text.

If symbolizer is NULL, then no symbolization will be performed and any memory addresses will be shown as their
numeric address.

If symbolizer is non-NULL, the symbolizer function will be called with symbolizer_id having the value
of the above symbolizer_id operand, and with address having the value of the address of the disassembled
instruction's operand.

If the symbolizer callback wishes to report a symbol text it must allocate and assign memory for a
non-empty NUL terminated char∗ string using a memory allocator that can be deallocated using the
amd_dbgapi_callbacks_s::deallocate_memory callback. If must assign the pointer to symbol_text, and return
AMD_DBGAPI_STATUS_SUCCESS.

If the symbolizer callback does not wish to report a symbol it must return AMD_DBGAPI_STATUS_ERROR_SYMBOL_NOT_FOUND.

Any symbol_text strings returned by the symbolizer callbacks reporting AMD_DBGAPI_STATUS_SUCCESS
are deallocated using the amd_dbgapi_callbacks_s::deallocate_memory callback before amd_dbgapi_disassemble_instruction
returns.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in size and instruction_text.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
size and instruction_text are unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and size and instruction_text are
unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

34 Topic Documentation

Return values

AMD_DBGAPI_STATUS_ERROR_INVALID_ARCHITECTURE_IDarchitecture_id is invalid. size and
instruction_text are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT size or memory are NULL, ∗size is 0, or address
is not aligned on the value returned by the
AMD_DBGAPI_ARCHITECTURE_INFO_MINIMUM_INSTRUCTION_ALIGNMENT
query. size and ∗ instruction_text are unaltered.

AMD_DBGAPI_STATUS_ERROR Encountered an error disassembling the instruction, a
symbolizer callback returned
AMD_DBGAPI_STATUS_SUCCESS with a NULL or
empty symbol_text string. The bytes may or may
not be a legal instruction. size and
instruction_text are unaltered.

AMD_DBGAPI_STATUS_ERROR_ILLEGAL_INSTRUCTIONThe bytes starting at address, when up to size
bytes are available, are not a legal instruction for the
architecture. size and instruction_text are
unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate instruction_text returns NULL,
or a symbolizer callback returns a status other than
AMD_DBGAPI_STATUS_SUCCESS and
AMD_DBGAPI_STATUS_ERROR_SYMBOL_NOT_FOUND.
size and instruction_text are unaltered.

2.6.5.4 amd_dbgapi_get_architecture()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_get_architecture (

uint32_t elf_amdgpu_machine,

amd_dbgapi_architecture_id_t ∗ architecture_id)

Get an architecture from the AMD GPU ELF EF_AMDGPU_MACH value corresponding to the architecture.

This is defined as a bit field in the e_flags AMD GPU ELF header. See [User Guide for AMDGPU Backend - Code
Object

• Header] (https://llvm.org/docs/AMDGPUUsage.html#header).

Parameters

in elf_amdgpu_machine The AMD GPU ELF EF_AMDGPU_MACH value.

out architecture_id The corresponding architecture.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in architecture_id.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

https://llvm.org/docs/AMDGPUUsage.html#header

2.7 Processes 35

Return values

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
architecture_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and architecture_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ELF_AMDGPU_MACHINEelf_amdgpu_machine is invalid or unsupported.
architecture_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT architecture_id is NULL. architecture_id
is unaltered.

2.7 Processes

Operations related to establishing AMD GPU debug control of a process.

Collaboration diagram for Processes:

Generating a core dump
 of a processProcesses

Modules

• Generating a core dump of a process

Operations related to generating and using core dumps.

Data Structures

• struct amd_dbgapi_process_id_t

Opaque process handle.

• struct amd_dbgapi_core_state_data_t

AMDGPU corefile state data for a process.

Macros

• #define AMD_DBGAPI_PROCESS_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_process_id_t, 0)

The NULL process handle.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

36 Topic Documentation

Typedefs

• typedef struct amd_dbgapi_client_process_s ∗ amd_dbgapi_client_process_id_t

Opaque client process handle.

Enumerations

• enum amd_dbgapi_endianness_t {
AMD_DBGAPI_ENDIAN_BIG = 0 ,
AMD_DBGAPI_ENDIAN_LITTLE = 1 }

Byte endianness encoding.

• enum amd_dbgapi_process_info_t {
AMD_DBGAPI_PROCESS_INFO_NOTIFIER = 1 ,
AMD_DBGAPI_PROCESS_INFO_WATCHPOINT_COUNT = 2 ,
AMD_DBGAPI_PROCESS_INFO_WATCHPOINT_SHARE = 3 ,
AMD_DBGAPI_PROCESS_INFO_PRECISE_MEMORY_SUPPORTED = 4 ,
AMD_DBGAPI_PROCESS_INFO_PRECISE_ALU_EXCEPTIONS_SUPPORTED = 5 ,
AMD_DBGAPI_PROCESS_INFO_OS_ID = 6 ,
AMD_DBGAPI_PROCESS_INFO_CORE_STATE = 7 }

Process queries that are supported by amd_dbgapi_process_get_info.

• enum amd_dbgapi_progress_t {
AMD_DBGAPI_PROGRESS_NORMAL = 0 ,
AMD_DBGAPI_PROGRESS_NO_FORWARD = 1 }

The kinds of progress supported by the library.

• enum amd_dbgapi_wave_creation_t {
AMD_DBGAPI_WAVE_CREATION_NORMAL = 0 ,
AMD_DBGAPI_WAVE_CREATION_STOP = 1 }

The kinds of wave creation supported by the hardware.

Functions

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_get_info (amd_dbgapi_process_id_t process_id,
amd_dbgapi_process_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_77

Query information about a process.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_attach (amd_dbgapi_client_process_id_t client_←↩

process_id, amd_dbgapi_process_id_t ∗process_id) AMD_DBGAPI_VERSION_0_56

Attach to a process in order to provide debug control of the AMD GPUs it uses.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_detach (amd_dbgapi_process_id_t process_id)
AMD_DBGAPI_VERSION_0_54

Detach from a process and no longer have debug control of the AMD GPU devices it uses.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_set_progress (amd_dbgapi_process_id_t process←↩

_id, amd_dbgapi_progress_t progress) AMD_DBGAPI_VERSION_0_76

Set the progress required for a process.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_set_wave_creation (amd_dbgapi_process_id_t
process_id, amd_dbgapi_wave_creation_t creation) AMD_DBGAPI_VERSION_0_76

Set the wave creation mode for a process.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.7 Processes 37

2.7.1 Detailed Description

Operations related to establishing AMD GPU debug control of a process.

The library supports AMD GPU debug control of multiple operating system processes. Each process can have access
to multiple AMD GPU devices, but each process uses the AMD GPU devices independently of other processes.

2.7.2 Macro Definition Documentation

2.7.2.1 AMD_DBGAPI_PROCESS_NONE

#define AMD_DBGAPI_PROCESS_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_process_id_t, 0)

The NULL process handle.

2.7.3 Typedef Documentation

2.7.3.1 amd_dbgapi_client_process_id_t

typedef struct amd_dbgapi_client_process_s∗ amd_dbgapi_client_process_id_t

Opaque client process handle.

A pointer to client data associated with a process. This pointer is passed to the process specific callbacks (see
Callbacks) to allow the client of the library to identify the process. Each process must have a single unique value.

2.7.4 Enumeration Type Documentation

2.7.4.1 amd_dbgapi_endianness_t

enum amd_dbgapi_endianness_t

Byte endianness encoding.

Enumerator

AMD_DBGAPI_ENDIAN_BIG Encoding is done using big endian.

AMD_DBGAPI_ENDIAN_LITTLE Encoding is done using little endian.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

38 Topic Documentation

2.7.4.2 amd_dbgapi_process_info_t

enum amd_dbgapi_process_info_t

Process queries that are supported by amd_dbgapi_process_get_info.

Each query specifies the type of data returned in the value argument to amd_dbgapi_process_get_info.

Enumerator

AMD_DBGAPI_PROCESS_INFO_NOTIFIER The notifier for the process that indicates if pending
events are available. The type of this attributes is
amd_dbgapi_notifier_t.

AMD_DBGAPI_PROCESS_INFO_WATCHPOINT_←↩

COUNT
Return the number of data watchpoints supported by
the process. Zero is returned if data watchpoints are not
supported. The type of this attribute is size_t.

AMD_DBGAPI_PROCESS_INFO_WATCHPOINT_←↩

SHARE
Return how watchpoints are shared between processes.
The type of this attribute is uint32_t with the values
defined by amd_dbgapi_watchpoint_share_kind_t.

AMD_DBGAPI_PROCESS_INFO_PRECISE_←↩

MEMORY_SUPPORTED
Return if the architectures of all the agents of a process
support controlling memory precision. The type of this
attribute is uint32_t with the values defined by
amd_dbgapi_memory_precision_t.

AMD_DBGAPI_PROCESS_INFO_PRECISE_ALU_←↩

EXCEPTIONS_SUPPORTED
Return if the architectures of all the agents of a process
support controlling ALU exceptions reporting precision.
The type of this attribute is uint32_t with the values
defined by amd_dbgapi_alu_exceptions_precision_t.

AMD_DBGAPI_PROCESS_INFO_OS_ID Native operating system process ID. The type of this
attribute is amd_dbgapi_os_process_id_t.
If the native operating system process was exited when
amd_dbgapi_process_attach attached to the process,
then amd_dbgapi_process_get_info returns the
AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE
error.
If the process image was rebuilt using a core dump,
then amd_dbgapi_process_get_info returns the
AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE
error.

AMD_DBGAPI_PROCESS_INFO_CORE_STATE Return a blob containing the content to put in the state
note when generating a core dump. The content of the
note is allocated using the
amd_dbgapi_callbacks_s::allocate_memory callback
and is owned by the client.
If allocation fails, then amd_dbgapi_process_get_info
returns the
AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK
error.

2.7.4.3 amd_dbgapi_progress_t

enum amd_dbgapi_progress_t

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.7 Processes 39

The kinds of progress supported by the library.

In performing operations, the library may make both waves it needs to access, as well as other waves, unavailable
for hardware execution. After completing the operation, it will make all waves available for hardware execution. This
is termed pausing and unpausing wave execution respectively. Pausing and unpausing waves for each command
separately works but can result in longer latency than if several commands could be performed while the waves are
paused. Debugging the very large number of waves that can exist on an AMD GPU can involve many operations,
making batching commands even more beneficial. The progress setting allows controlling this behavior.

Enumerator

AMD_DBGAPI_PROGRESS_NORMAL Normal progress is needed. Commands are issued immediately.
After completing each command all non-stopped waves will be
unpaused. Switching from another progress mode to this will
unpause any waves that are paused.

AMD_DBGAPI_PROGRESS_NO_FORWARD No forward progress is needed. Commands are issued
immediately. After completing each command, non-stopped
waves may be left paused. The waves left paused may include
both the wave(s) the command operates on, as well as other
waves. While in AMD_DBGAPI_PROGRESS_NO_FORWARD
mode, paused waves may remain paused, or may be unpaused
at any point. Only by leaving
AMD_DBGAPI_PROGRESS_NO_FORWARD mode will the
library not leave any waves paused after completing a command.
Note that the events that amd_dbgapi_wave_stop causes to be
reported will occur when in
AMD_DBGAPI_PROGRESS_NO_FORWARD mode. It is not
necessary to change the progress mode to
AMD_DBGAPI_PROGRESS_NORMAL for those events to be
reported.
This can result in a series of commands completing far faster
than in AMD_DBGAPI_PROGRESS_NORMAL mode. Also, any
queries for lists such as amd_dbgapi_process_wave_list may
return unchanged as true more often, reducing the work
needed to parse the lists to determine what has changed. With
large lists this can be significant. If the client needs a wave to
complete a single step resume, then it must leave
AMD_DBGAPI_PROGRESS_NO_FORWARD mode in order to
prevent that wave from remaining paused.

2.7.4.4 amd_dbgapi_wave_creation_t

enum amd_dbgapi_wave_creation_t

The kinds of wave creation supported by the hardware.

The hardware creates new waves asynchronously as it executes dispatch packets. If the client requires that all waves
are stopped, it needs to first request that the hardware stops creating new waves, followed by halting all already created
waves. The wave creation setting allows controlling how the hardware creates new waves for dispatch packets on
queues associated with agents belonging to a specific process. It has no affect on waves that have already been
created.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

40 Topic Documentation

Enumerator

AMD_DBGAPI_WAVE_CREATION_NORMAL Normal wave creation allows new waves to be created.
AMD_DBGAPI_WAVE_CREATION_STOP Stop wave creation prevents new waves from being created.

2.7.5 Function Documentation

2.7.5.1 amd_dbgapi_process_attach()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_attach (

amd_dbgapi_client_process_id_t client_process_id,

amd_dbgapi_process_id_t ∗ process_id)

Attach to a process in order to provide debug control of the AMD GPUs it uses.

Attaching can be performed on processes that have not started executing, as well as those that are already executing.

The process progress is initialized to AMD_DBGAPI_PROGRESS_NORMAL. All agents accessed by the process are
configured to AMD_DBGAPI_MEMORY_PRECISION_NONE and AMD_DBGAPI_ALU_EXCEPTIONS_PRECISION_NONE.

When attaching to a live process, the client process handle must have been associated with a native operating system
process, and the amd_dbgapi_callbacks_s::client_process_get_info callback with the AMD_DBGAPI_CLIENT_PROCESS_INFO_OS_PID
request is used to obtain it.

When attaching to a process image (core dump), the client process handle has not been associated with
a native operating system, and the amd_dbgapi_callbacks_s::client_process_get_info request must return
AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE.

It is the client's responsibility to fetch the current code object list using amd_dbgapi_process_code_object_list as the
AMD_DBGAPI_EVENT_KIND_CODE_OBJECT_LIST_UPDATED event is only reported when a thread is in the process
of changing the code object list.

The AMD_DBGAPI_EVENT_KIND_RUNTIME event will be reported if the inferior's runtime support is already enabled.

If the associated native operating system process exits while the library is attached to it, appropriate actions are taken
to reflect that the inferior process no longer has any state. For example, pending events are created for wave command
termination if there are pending wave stop or wave single step requests; a pending code object list updated event
is created if there were codes objects previously loaded; a pending runtime event is created to indicate the inferior's
runtime support has been unloaded if previously loaded; and queries on agents, queues, dispatches, waves, and code
objects will report none exist. The process handle remains valid until amd_dbgapi_process_detach is used to detach
from the client process.

If the associated native operating system process has already exited when attaching, then the attach is still successful,
but any queries on agents, queues, dispatches, waves, and code objects will report none exist.

If the associated native operating system process exits while a library operation is being executed, then the operation
behaves as if the process exited before it was invoked. For example, a wave operation will report an invalid wave handle,
a list query will report an empty list, and so forth.

It is undefined to use any library operation except amd_dbgapi_process_detach on a process that has its virtual address
space replaced. After detach, the same process can be attached again to continue accessing the process if desired. For
example, in Linux an exec system call replaces the virtual address space which causes all information about agents,
queues, dispatches, and waves to become invalid, and the ability to read and write memory may also no longer be
allowed by the operating system.

If after attaching to a process it spawns another process, the library continues to be attached to the parent
process. If desired, the client can always use amd_dbgapi_process_attach to attach to the child process and
amd_dbgapi_process_detach to detach from the parent process.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.7 Processes 41

Parameters

in client_process←↩

_id
The client handle for the process. It is passed as an argument to any callbacks
performed to indicate the process being requested.

out process_id The process handle to use for all operations related to this process.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
process is now attached returning process_id.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
process_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and process_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_ALREADY_ATTACHED The process is already attached. The process remains
attached and process_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_RESTRICTION There is a restriction error that prevents debugging
process client_process_id. See
AMD_DBGAPI_STATUS_ERROR_RESTRICTION for
possible reasons. The process is not attached and
process_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT client_process_id or process_id are NULL.
The process is not attached and process_id is
unaltered.

AMD_DBGAPI_STATUS_ERROR Encountered some other error while attaching to the
process. The process is not attached and
process_id is unaltered.

2.7.5.2 amd_dbgapi_process_detach()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_detach (

amd_dbgapi_process_id_t process_id)

Detach from a process and no longer have debug control of the AMD GPU devices it uses.

If the associated native operating system process has already exited, or exits while being detached, then the process is
trivially detached.

Otherwise, detaching causes execution of the associated native operating system process to continue unaffected by
the library. Any waves with a displaced stepping buffer are stopped and the displaced stepping buffer completed.
Any data watchpoints are removed. All agents are configured to AMD_DBGAPI_MEMORY_PRECISION_NONE and
AMD_DBGAPI_ALU_EXCEPTIONS_PRECISION_NONE. Any waves in the stopped or single step state are resumed
in non-single step mode. Any pending events for the process are discarded, and no further events will be gener-
ated for the process. If the process is in the frozen state, it is unfrozen. The wave creation mode is restored to
AMD_DBGAPI_WAVE_CREATION_NORMAL.

After detaching, the process handle, and all handles associated with entities relating to the process, become invalid.

A native operating system process can be attached and detached multiple times. Each attach returns a unique process
handle even for the same native operating system process.

The client is responsible for removing any inserted breakpoints before detaching. Failing to do so will cause execution of
a breakpoint instruction to put the queue into an error state, aborting any executing waves for dispatches on that queue.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

42 Topic Documentation

Parameters

process←↩

_id
The process handle that is being detached.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
process has been detached from the associated native
operating system process, or the associated native
operating system process has already exited.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized.

AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_IDThe process_id is invalid. No process is detached.

2.7.5.3 amd_dbgapi_process_get_info()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_get_info (

amd_dbgapi_process_id_t process_id,

amd_dbgapi_process_info_t query,

size_t value_size,

void ∗ value)

Query information about a process.

amd_dbgapi_process_info_t specifies the queries supported and the type returned using the value argument.

Parameters

in process←↩

_id
The process being queried.

in query The query being requested.

in value_size Size of the memory pointed to by value. Must be equal to the byte size of the query result.

out value Pointer to memory where the query result is stored.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in value.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_IDprocess_id is invalid. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT value is NULL or query is invalid. value is
unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.7 Processes 43

Return values

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYvalue_size does not match the size of the query
result. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE The requested information is not available. See
amd_dbgapi_process_info_t for queries that can
produce this error. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate value returns NULL. value is
unaltered.

AMD_DBGAPI_STATUS_ERROR_PROCESS_NOT_FROZENThe request is
AMD_DBGAPI_PROCESS_INFO_CORE_STATE but
the process is not frozen.

AMD_DBGAPI_STATUS_ERROR_RESTRICTION The request is
::AMDGPU_DBGAPI_PROCESS_INFO_CORE_STATE
but the process configuration does not permit the
creation of a reliable core dump.

2.7.5.4 amd_dbgapi_process_set_progress()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_set_progress (

amd_dbgapi_process_id_t process_id,

amd_dbgapi_progress_t progress)

Set the progress required for a process.

Parameters

in process←↩

_id
If AMD_DBGAPI_PROCESS_NONE then set the progress for all processes currently
attached. Otherwise, set the progress for the process process_id.

in progress The progress being set.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
progress has been set.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized.

AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_IDprocess_id is invalid. The progress setting is not
changed.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT progress is invalid. The progress setting is not
changed.

AMD_DBGAPI_STATUS_ERROR_PROCESS_FROZEN The process is frozen. The progress setting cannot be
changed and must remain
AMD_DBGAPI_PROGRESS_NO_FORWARD.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

44 Topic Documentation

2.7.5.5 amd_dbgapi_process_set_wave_creation()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_set_wave_creation (

amd_dbgapi_process_id_t process_id,

amd_dbgapi_wave_creation_t creation)

Set the wave creation mode for a process.

The setting applies to all agents of the specified process.

Parameters

in process←↩

_id
The process being controlled.

in creation The wave creation mode being set.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
wave creation mode has been set.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized.

AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_IDprocess_id is invalid. The wave creation mode
setting is not changed.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT creation is invalid. The wave creation setting is not
changed.

AMD_DBGAPI_STATUS_ERROR_PROCESS_FROZEN The process is frozen. The wave creation mode setting
cannot be changed and must remain
AMD_DBGAPI_WAVE_CREATION_STOP.

2.7.6 Generating a core dump of a process

Operations related to generating and using core dumps.

Collaboration diagram for Generating a core dump of a process:

Generating a core dump
 of a processProcesses

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.7 Processes 45

Functions

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_freeze (amd_dbgapi_process_id_t process_id)
AMD_DBGAPI_VERSION_0_76

Freeze the process identified by process_id.
• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_unfreeze (amd_dbgapi_process_id_t process_id)

AMD_DBGAPI_VERSION_0_76

Unfreeze the process identified by process_id.

2.7.6.1 Detailed Description

Operations related to generating and using core dumps.

When the client needs to generate a core dump of a process, the following steps are followed:

1. The client suspends the execution of all host threads.

2. The client sets the progress mode for the process to AMD_DBGAPI_PROGRESS_NO_FORWARD and stops
wave creation.

3. The client calls amd_dbgapi_process_freeze to suspend execution on the agents.

4. The client queries AMD_DBGAPI_PROCESS_INFO_CORE_STATE and stores the content of the returned buffer
in a note in the generated core file.

5. The client includes in the core dump all the information required to form a core dump of the host process.

6. The client unfreezes the process using amd_dbgapi_process_unfreeze.

7. The client can set progress to AMD_DBGAPI_PROGRESS_NORMAL and resume the execution of host threads
as desired.

2.7.6.2 Function Documentation

2.7.6.2.1 amd_dbgapi_process_freeze()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_freeze (

amd_dbgapi_process_id_t process_id)

Freeze the process identified by process_id.

The library ensures that all queues belonging to process process_id are stopped. All waves are stopped and left
in a state suitable to be discovered by another instance of the library. Any cached updates to memory or registers are
flushed.

It is required that the client sets the process's progress to AMD_DBGAPI_PROGRESS_NO_FORWARD and the wave
creation mode to AMD_DBGAPI_WAVE_CREATION_STOP before calling this procedure.

It is expected that all displaced stepping buffers are disabled before calling this operation. If displaced stepping buffers
are still enabled when performing this operation, then another instance of the library will see an invalid program counter
for the associated wave(s).

It is expected that all host threads are suspended by the client before calling this method as executing threads might
create queues and submit dispatches. If any thread is running on the host process, the behavior and state of the library
are undefined.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

46 Topic Documentation

Parameters

in process←↩

_id
The client handle of the process to freeze.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
process is in the frozen state.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized.

AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_IDprocess_id is invalid.

AMD_DBGAPI_STATUS_ERROR_INCOMPATIBLE_PROCESS_STATEif either progress mode for the process identified by
process_id is not
AMD_DBGAPI_PROGRESS_NO_FORWARD or if
wave creation mode for the process identified by
process_id is not
AMD_DBGAPI_WAVE_CREATION_STOP.

AMD_DBGAPI_STATUS_ERROR_PROCESS_ALREADY_FROZENThe process process_id is already frozen. The
process is not changed.

2.7.6.2.2 amd_dbgapi_process_unfreeze()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_unfreeze (

amd_dbgapi_process_id_t process_id)

Unfreeze the process identified by process_id.

After calling this, the library is allowed to keep writes to registers and memory in an internal cache until the effects are
needed to resume execution.

Parameters

in process←↩

_id
The client handle of the process to unfreeze.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
process is unfrozen.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized.

AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_IDprocess_id is invalid.

AMD_DBGAPI_STATUS_ERROR_PROCESS_NOT_FROZENThe process process_id is not frozen. The process
is not changed.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.8 Code Objects 47

2.8 Code Objects

Operations related to AMD GPU code objects loaded into a process.

Data Structures

• struct amd_dbgapi_code_object_id_t

Opaque code object handle.

Macros

• #define AMD_DBGAPI_CODE_OBJECT_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_code_object_id_t,
0)

The NULL code object handle.

Enumerations

• enum amd_dbgapi_code_object_info_t {
AMD_DBGAPI_CODE_OBJECT_INFO_PROCESS = 1 ,
AMD_DBGAPI_CODE_OBJECT_INFO_URI_NAME = 2 ,
AMD_DBGAPI_CODE_OBJECT_INFO_LOAD_ADDRESS = 3 }

Code object queries that are supported by amd_dbgapi_code_object_get_info.

Functions

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_code_object_get_info (amd_dbgapi_code_object_id_t code←↩

_object_id, amd_dbgapi_code_object_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_54

Query information about a code object.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_code_object_list (amd_dbgapi_process_id_t
process_id, size_t ∗code_object_count, amd_dbgapi_code_object_id_t ∗∗code_objects, amd_dbgapi_changed_t
∗changed) AMD_DBGAPI_VERSION_0_54

Return the list of loaded code objects.

2.8.1 Detailed Description

Operations related to AMD GPU code objects loaded into a process.

AMD GPU code objects are standard ELF shared libraries defined in [User Guide for AMDGPU Backend - Code Object]
(https://llvm.org/docs/AMDGPUUsage.html#code-object).

AMD GPU code objects can be embedded in the host executable code object that is loaded into memory or be in a
separate file in the file system. The AMD GPU loader supports loading either from memory or from files. The loader
selects the segments to put into memory that contain the code and data necessary for AMD GPU code execution. It
allocates global memory to map these segments and performs necessary relocations to create the loaded code object.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

https://llvm.org/docs/AMDGPUUsage.html#code-object

48 Topic Documentation

2.8.2 Macro Definition Documentation

2.8.2.1 AMD_DBGAPI_CODE_OBJECT_NONE

#define AMD_DBGAPI_CODE_OBJECT_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_code_object_id_t, 0)

The NULL code object handle.

2.8.3 Enumeration Type Documentation

2.8.3.1 amd_dbgapi_code_object_info_t

enum amd_dbgapi_code_object_info_t

Code object queries that are supported by amd_dbgapi_code_object_get_info.

Each query specifies the type of data returned in the value argument to amd_dbgapi_code_object_get_info.

Enumerator

AMD_DBGAPI_CODE_OBJECT_INFO_PROCESS Return the process to which this code object belongs.
The type of this attribute is amd_dbgapi_process_id_t.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.8 Code Objects 49

Enumerator

AMD_DBGAPI_CODE_OBJECT_INFO_URI_NAME The URI name of the ELF shared object from which the
code object was loaded. Note that the code object is the
in memory loaded relocated form of the ELF shared
object. Multiple code objects may be loaded at different
memory addresses in the same process from the same
ELF shared object.
The type of this attribute is a NUL terminated char∗. It
is allocated by the
amd_dbgapi_callbacks_s::allocate_memory callback
and is owned by the client.
The URI name syntax is defined by the following BNF
syntax:

code_object_uri ::== file_uri | memory_uri
file_uri ::== "file://" file_path

[range_specifier]
memory_uri ::== "memory://" process_id

range_specifier
range_specifier ::== ("##" | "?")

"offset=" number
"&" "size=" number

file_path ::== URI_ENCODED_OS_FILE_PATH
process_id ::== DECIMAL_NUMBER
number ::== HEX_NUMBER

| DECIMAL_NUMBER
| OCTAL_NUMBER

DECIMAL_NUMBER is a decimal C integral literal,
HEX_NUMBER is a hexadecimal C integral literal with a
"0x" or "0X" prefix, and OCTAL_NUMBER is an octal C
integral literal with a "0" prefix.
URI_ENCODED_OS_FILE_PATH is a file path
specified as a URI encoded UTF-8 string. In URI
encoding, every character that is not in the regular
expression [a-zA-Z0-9/_.∼-] is encoded as two
uppercase hexadecimal digits proceeded by "%".
Directories in the path are separated by "/".
offset is a 0-based byte offset to the start of the code
object. For a file URI, it is from the start of the file
specified by the file_path, and if omitted defaults to
0. For a memory URI, it is the memory address and is
required.
size is the number of bytes in the code object. For a
file URI, if omitted it defaults to the size of the file. It is
required for a memory URI.
process_id is the identity of the process owning the
memory. For Linux it is the C unsigned integral decimal
literal for the process ID (PID).
For example:

file:///dir1/dir2/file1
file:///dir3/dir4/file2##offset=0x2000&size=3000
memory://1234##offset=0x20000&size=3000

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

50 Topic Documentation

Enumerator

AMD_DBGAPI_CODE_OBJECT_INFO_LOAD_←↩

ADDRESS
The difference between the address in the ELF shared
object and the address the code object is loaded in
memory. The type of this attributes is ptrdiff_t.

2.8.4 Function Documentation

2.8.4.1 amd_dbgapi_code_object_get_info()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_code_object_get_info (

amd_dbgapi_code_object_id_t code_object_id,

amd_dbgapi_code_object_info_t query,

size_t value_size,

void ∗ value)

Query information about a code object.

amd_dbgapi_code_object_info_t specifies the queries supported and the type returned using the value argument.

Parameters

in code_object←↩

_id
The handle of the code object being queried.

in query The query being requested.

in value_size Size of the memory pointed to by value. Must be equal to the byte size of the query
result.

out value Pointer to memory where the query result is stored.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in value.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_CODE_OBJECT_IDcode_object_id is invalid. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT value is NULL or query is invalid. value is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYvalue_size does not match the size of the query
result. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate value returns NULL. value is
unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.8 Code Objects 51

2.8.4.2 amd_dbgapi_process_code_object_list()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_code_object_list (

amd_dbgapi_process_id_t process_id,

size_t ∗ code_object_count,

amd_dbgapi_code_object_id_t ∗∗ code_objects,

amd_dbgapi_changed_t ∗ changed)

Return the list of loaded code objects.

The order of the code object handles in the list is unspecified and can vary between calls.

Parameters

in process_id If AMD_DBGAPI_PROCESS_NONE then the code object list for all processes
is requested. Otherwise, the code object list for process process_id is
requested.

out code_object_count The number of code objects currently loaded.

out code_objects If changed is not NULL and the code object list of all of the processes
requested have not changed since the last call(s) to
amd_dbgapi_process_code_object_list for each of them, then return NULL.
Otherwise, return a pointer to an array of amd_dbgapi_code_object_id_t with
code_object_count elements. It is allocated by the
amd_dbgapi_callbacks_s::allocate_memory callback and is owned by the client.

in,out changed If NULL then left unaltered. If non-NULL, set to AMD_DBGAPI_CHANGED_NO
if the list of code objects for each requested process is the same as when
amd_dbgapi_process_code_object_list was last called for them. Otherwise, set
to AMD_DBGAPI_CHANGED_YES.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in changed, code_object_count,
and code_objects.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized;
and code_object_count, code_objects, and
changed are unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized; and code_object_count,
code_objects, and changed are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_IDprocess_id is invalid. code_object_count,
code_objects, and changed are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT code_object_count or code_objects are
NULL, or changed is invalid.
code_object_count, code_objects, and
changed are unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate code_objects returns NULL.
code_object_count, code_objects, and
changed are unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

52 Topic Documentation

2.9 Agents

Operations related to AMD GPU agents accessible to a process.

Data Structures

• struct amd_dbgapi_agent_id_t

Opaque agent handle.

Macros

• #define AMD_DBGAPI_AGENT_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_agent_id_t, 0)

The NULL agent handle.

Enumerations

• enum amd_dbgapi_agent_info_t {
AMD_DBGAPI_AGENT_INFO_PROCESS = 1 ,
AMD_DBGAPI_AGENT_INFO_NAME = 2 ,
AMD_DBGAPI_AGENT_INFO_ARCHITECTURE = 3 ,
AMD_DBGAPI_AGENT_INFO_STATE = 4 ,
AMD_DBGAPI_AGENT_INFO_PCI_DOMAIN = 5 ,
AMD_DBGAPI_AGENT_INFO_PCI_SLOT = 6 ,
AMD_DBGAPI_AGENT_INFO_PCI_VENDOR_ID = 7 ,
AMD_DBGAPI_AGENT_INFO_PCI_DEVICE_ID = 8 ,
AMD_DBGAPI_AGENT_INFO_EXECUTION_UNIT_COUNT = 9 ,
AMD_DBGAPI_AGENT_INFO_MAX_WAVES_PER_EXECUTION_UNIT = 10 ,
AMD_DBGAPI_AGENT_INFO_OS_ID = 11 }

Agent queries that are supported by amd_dbgapi_agent_get_info.

• enum amd_dbgapi_agent_state_t {
AMD_DBGAPI_AGENT_STATE_SUPPORTED = 1 ,
AMD_DBGAPI_AGENT_STATE_NOT_SUPPORTED = 2 }

Agent state.

Functions

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_agent_get_info (amd_dbgapi_agent_id_t agent_id, amd_dbgapi_agent_info_t
query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_67

Query information about an agent.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_agent_list (amd_dbgapi_process_id_t process_id,
size_t ∗agent_count, amd_dbgapi_agent_id_t ∗∗agents, amd_dbgapi_changed_t ∗changed) AMD_DBGAPI_VERSION_0_54

Return the list of agents.

2.9.1 Detailed Description

Operations related to AMD GPU agents accessible to a process.

Agent is the term for AMD GPU devices that can be accessed by the process.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.9 Agents 53

2.9.2 Macro Definition Documentation

2.9.2.1 AMD_DBGAPI_AGENT_NONE

#define AMD_DBGAPI_AGENT_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_agent_id_t, 0)

The NULL agent handle.

2.9.3 Enumeration Type Documentation

2.9.3.1 amd_dbgapi_agent_info_t

enum amd_dbgapi_agent_info_t

Agent queries that are supported by amd_dbgapi_agent_get_info.

Each query specifies the type of data returned in the value argument to amd_dbgapi_agent_get_info.

Enumerator

AMD_DBGAPI_AGENT_INFO_PROCESS Return the process to which this agent belongs. The
type of this attribute is amd_dbgapi_process_id_t.

AMD_DBGAPI_AGENT_INFO_NAME Agent name. The type of this attribute is a pointer to a
NUL terminated char∗. It is allocated by
amd_dbgapi_callbacks_s::allocate_memory and is
owned by the client.

AMD_DBGAPI_AGENT_INFO_ARCHITECTURE Return the architecture of this agent. The type of this
attribute is amd_dbgapi_architecture_id_t.
If the architecture of the agent is not supported by the
library then amd_dbgapi_agent_get_info returns the
AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE
error. See the Supported AMD GPU Architectures
section.

AMD_DBGAPI_AGENT_INFO_STATE Return the agent state. The type of this attribute is
uint32_t with values from
amd_dbgapi_agent_state_t.

AMD_DBGAPI_AGENT_INFO_PCI_DOMAIN PCI domain the agent is in. The type of this attribute is
uint16_t.

AMD_DBGAPI_AGENT_INFO_PCI_SLOT PCI slot of the agent in BDF format (see
[Bus:Device.Function (BDF) Notation][bfd]. The type of
this attribute is uint16_t.

AMD_DBGAPI_AGENT_INFO_PCI_VENDOR_ID PCI vendor ID of the agent. The type of this attribute is
uint32_t.

AMD_DBGAPI_AGENT_INFO_PCI_DEVICE_ID PCI device ID of the agent. The type of this attribute is
uint32_t.

AMD_DBGAPI_AGENT_INFO_EXECUTION_UNIT_←↩

COUNT
Total number of Execution Units (EUs) available in the
agent. The type of this attribute is size_t.

AMD_DBGAPI_AGENT_INFO_MAX_WAVES_PER_←↩

EXECUTION_UNIT
Maximum number of waves supported by an execution
unit. The type of this attribute is size_t.

AMD_DBGAPI_AGENT_INFO_OS_ID Native operating system agent ID. The type of this
attribute is amd_dbgapi_os_agent_id_t.Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

54 Topic Documentation

2.9.3.2 amd_dbgapi_agent_state_t

enum amd_dbgapi_agent_state_t

Agent state.

Enumerator

AMD_DBGAPI_AGENT_STATE_SUPPORTED Agent supports debugging.

AMD_DBGAPI_AGENT_STATE_NOT_SUPPORTED Agent does not support debugging. Reasons include:

• The architecture of the agent is not supported by
the library. See the
Supported AMD GPU Architectures section. If
there is such an agent then some features may be
treated conservatively since the library does not
know if the agent really supports the feature. The
conservative treatment of such features include:

–
AMD_DBGAPI_PROCESS_INFO_PRECISE_MEMORY_SUPPORTED
is conservatively treated as
AMD_DBGAPI_MEMORY_PRECISION_NONE.

–
AMD_DBGAPI_PROCESS_INFO_PRECISE_ALU_EXCEPTIONS_SUPPORTED
is conservatively treated as
AMD_DBGAPI_ALU_EXCEPTIONS_PRECISION_NONE.

–
AMD_DBGAPI_PROCESS_INFO_WATCHPOINT_COUNT
is conservatively treated as 0.

• The firmware version of the agent is not
compatible with the library.

• The AMD GPU driver does not support
debugging for the the agent's architecture.

No queues, dispatches, or waves will be reported for the
agent.

2.9.4 Function Documentation

2.9.4.1 amd_dbgapi_agent_get_info()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_agent_get_info (

amd_dbgapi_agent_id_t agent_id,

amd_dbgapi_agent_info_t query,

size_t value_size,

void ∗ value)

Query information about an agent.

amd_dbgapi_agent_info_t specifies the queries supported and the type returned using the value argument.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.9 Agents 55

Parameters

in agent_id The handle of the agent being queried.

in query The query being requested.

in value_size Size of the memory pointed to by value. Must be equal to the byte size of the query result.

out value Pointer to memory where the query result is stored.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in value.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_AGENT_ID agent_id is invalid. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT value is NULL or query is invalid. value is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYvalue_size does not match the size of the query
result. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE The requested information is not available. See
amd_dbgapi_agent_info_t for queries that can produce
this error. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate value returns NULL. value is
unaltered.

2.9.4.2 amd_dbgapi_process_agent_list()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_agent_list (

amd_dbgapi_process_id_t process_id,

size_t ∗ agent_count,

amd_dbgapi_agent_id_t ∗∗ agents,

amd_dbgapi_changed_t ∗ changed)

Return the list of agents.

The order of the agent handles in the list is unspecified and can vary between calls.

All agents of the process are reported, even if they do not support debugging. See AMD_DBGAPI_AGENT_STATE_NOT_SUPPORTED.

Parameters

in process_id If AMD_DBGAPI_PROCESS_NONE then the agent list for all processes is requested.
Otherwise, the agent list of process process_id is requested.

out agent_count The number of agents accessed by the process.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

56 Topic Documentation

Parameters

out agents If changed is not NULL and the agent list of all of the processes requested have not
changed since the last call(s) to amd_dbgapi_process_agent_list for each of them,
then return NULL. Otherwise, return a pointer to an array of amd_dbgapi_agent_id_t
with agent_count elements. It is allocated by the
amd_dbgapi_callbacks_s::allocate_memory callback and is owned by the client.

in,out changed If NULL then left unaltered. If non-NULL, set to AMD_DBGAPI_CHANGED_NO if the
list of agents for each requested process is the same as when
amd_dbgapi_process_agent_list was last called for them. Otherwise, set to
AMD_DBGAPI_CHANGED_YES.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in changed, agent_count, and
agents.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized;
and agent_count, agents, and changed are
unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized; and agent_count, agents, and
changed are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_IDprocess_id is invalid. agent_count, agents,
and changed are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT agent_count or agents are NULL, or changed is
invalid. agent_count, agents, and changed are
unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate agents returns NULL.
agent_count, agents, and changed are
unaltered.

2.10 Queues

Operations related to AMD GPU queues.

Data Structures

• struct amd_dbgapi_queue_id_t

Opaque queue handle.

Macros

• #define AMD_DBGAPI_QUEUE_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_queue_id_t, 0)

The NULL queue handle.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.10 Queues 57

Enumerations

• enum amd_dbgapi_queue_info_t {
AMD_DBGAPI_QUEUE_INFO_AGENT = 1 ,
AMD_DBGAPI_QUEUE_INFO_PROCESS = 2 ,
AMD_DBGAPI_QUEUE_INFO_ARCHITECTURE = 3 ,
AMD_DBGAPI_QUEUE_INFO_TYPE = 4 ,
AMD_DBGAPI_QUEUE_INFO_STATE = 5 ,
AMD_DBGAPI_QUEUE_INFO_ERROR_REASON = 6 ,
AMD_DBGAPI_QUEUE_INFO_ADDRESS = 7 ,
AMD_DBGAPI_QUEUE_INFO_SIZE = 8 ,
AMD_DBGAPI_QUEUE_INFO_OS_ID = 9 }

Queue queries that are supported by amd_dbgapi_queue_get_info.

• enum amd_dbgapi_queue_state_t {
AMD_DBGAPI_QUEUE_STATE_VALID = 1 ,
AMD_DBGAPI_QUEUE_STATE_ERROR = 2 }

Queue state.

• enum amd_dbgapi_exceptions_t {
AMD_DBGAPI_EXCEPTION_NONE = 0 ,
AMD_DBGAPI_EXCEPTION_WAVE_ABORT = (1 << 0) ,
AMD_DBGAPI_EXCEPTION_WAVE_TRAP = (1 << 1) ,
AMD_DBGAPI_EXCEPTION_WAVE_MATH_ERROR = (1 << 2) ,
AMD_DBGAPI_EXCEPTION_WAVE_ILLEGAL_INSTRUCTION = (1 << 3) ,
AMD_DBGAPI_EXCEPTION_WAVE_MEMORY_VIOLATION = (1 << 4) ,
AMD_DBGAPI_EXCEPTION_WAVE_ADDRESS_ERROR = (1 << 5) ,
DEPRECATED = AMD_DBGAPI_EXCEPTION_WAVE_ADDRESS_ERROR ,
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_DIM_INVALID = (1 << 16) ,
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_GROUP_SEGMENT_SIZE_INVALID = (1 << 17) ,
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_CODE_INVALID = (1 << 18) ,
AMD_DBGAPI_EXCEPTION_PACKET_UNSUPPORTED = (1 << 20) ,
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_WORKGROUP_SIZE_INVALID = (1 << 21) ,
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_REGISTER_COUNT_TOO_LARGE = (1 << 22) ,
AMD_DBGAPI_EXCEPTION_PACKET_VENDOR_UNSUPPORTED = (1 << 23) ,
AMD_DBGAPI_EXCEPTION_QUEUE_PREEMPTION_ERROR = (1 << 31) }

A bit mask of the exceptions that can cause a queue to enter the queue error state.

Functions

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_queue_get_info (amd_dbgapi_queue_id_t queue_id,
amd_dbgapi_queue_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_68

Query information about a queue.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_queue_list (amd_dbgapi_process_id_t process_id,
size_t ∗queue_count, amd_dbgapi_queue_id_t ∗∗queues, amd_dbgapi_changed_t ∗changed) AMD_DBGAPI_VERSION_0_54

Return the list of queues.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_queue_packet_list (amd_dbgapi_queue_id_t queue_id,
amd_dbgapi_os_queue_packet_id_t ∗read_packet_id, amd_dbgapi_os_queue_packet_id_t ∗write_packet_id,
size_t ∗packets_byte_size, void ∗∗packets_bytes) AMD_DBGAPI_VERSION_0_54

Return the packets for a queue.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

58 Topic Documentation

2.10.1 Detailed Description

Operations related to AMD GPU queues.

Queues are user mode data structures that allow packets to be inserted that control the AMD GPU agents. The dispatch
packet is used to initiate the execution of a grid of waves.

2.10.2 Macro Definition Documentation

2.10.2.1 AMD_DBGAPI_QUEUE_NONE

#define AMD_DBGAPI_QUEUE_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_queue_id_t, 0)

The NULL queue handle.

2.10.3 Enumeration Type Documentation

2.10.3.1 amd_dbgapi_exceptions_t

enum amd_dbgapi_exceptions_t

A bit mask of the exceptions that can cause a queue to enter the queue error state.

Enumerator

AMD_DBGAPI_EXCEPTION_NONE If none of the bits are set, then the queue is not in the
error state.

AMD_DBGAPI_EXCEPTION_WAVE_ABORT A wave on the queue executed a trap instruction used to
abort a dispatch.

AMD_DBGAPI_EXCEPTION_WAVE_TRAP A wave on the queue executed an instruction that
caused an exception. This includes executing a trap
instruction (other than the trap reported as
AMD_DBGAPI_EXCEPTION_WAVE_ABORT),
executing an instruction that causes a fatal halt,
executing an instruction that causes an ECC error, or
executing an instruction that triggers a watchpoint
(normally watchpoints are handled by the library and are
never passed to the inferior's runtime to cause this
exception).

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.10 Queues 59

Enumerator

AMD_DBGAPI_EXCEPTION_WAVE_MATH_ERROR A wave on the queue executed an instruction that had a
floating point or integer enabled exception condition.
The conditions include:

• Floating point operation is invalid.

• Floating point operation had subnormal input that
was rounded to zero.

• Floating point operation performed a division by
zero.

• Floating point operation produced an overflow
result. The result was rounded to infinity.

• Floating point operation produced an underflow
result. A subnormal result was rounded to zero.

• Floating point operation produced an inexact
result.

• Integer operation performed a division by zero.

AMD_DBGAPI_EXCEPTION_WAVE_ILLEGAL_←↩

INSTRUCTION
A wave on the queue executed an illegal instruction.

AMD_DBGAPI_EXCEPTION_WAVE_MEMORY_←↩

VIOLATION
A wave on the queue had a memory violation. This
happens when accessing a non-existent memory page
or a page without the necessary permission (such as
writing to a readonly page or executing a non-execute
page).

AMD_DBGAPI_EXCEPTION_WAVE_ADDRESS_←↩

ERROR
A wave on the queue had an exception due to accessing
an invalid memory address. This includes an address
that is not suitably aligned (for example, a non-naturally
aligned atomic), or is outside the supported address
range for global or flat address apertures.

DEPRECATED Old deprecated name kept for backward compatibility.
Will be removed in a future release.

AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_←↩

DIM_INVALID
A dispatch packet on the queue has an invalid
dimension.

AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_←↩

GROUP_SEGMENT_SIZE_INVALID
A dispatch packet on the queue has an invalid group
segment size.

AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_←↩

CODE_INVALID
A dispatch packet on the queue has a NULL code
address.

AMD_DBGAPI_EXCEPTION_PACKET_←↩

UNSUPPORTED
A packet on the queue has an unsupported code.

AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_←↩

WORKGROUP_SIZE_INVALID
A dispatch packet on the queue has an invalid
workgroup size.

AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_←↩

REGISTER_COUNT_TOO_LARGE
A dispatch packet on the queue requires too many
registers.

AMD_DBGAPI_EXCEPTION_PACKET_VENDOR_←↩

UNSUPPORTED
A packet on the queue has an invalid vendor code.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

60 Topic Documentation

Enumerator

AMD_DBGAPI_EXCEPTION_QUEUE_←↩

PREEMPTION_ERROR
There was an error preempting the queue. When the
AMD GPU device driver generates this error it may
cause all waves associated with the queue to be killed.
Killing a wave causes it to be terminated immediately
without reporting any exceptions. Any killed waves that
have a pending single step will report a
AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED
event to indicate that the single step has been
cancelled.

2.10.3.2 amd_dbgapi_queue_info_t

enum amd_dbgapi_queue_info_t

Queue queries that are supported by amd_dbgapi_queue_get_info.

Each query specifies the type of data returned in the value argument to amd_dbgapi_queue_get_info.

Enumerator

AMD_DBGAPI_QUEUE_INFO_AGENT Return the agent to which this queue belongs. The type of
this attribute is amd_dbgapi_agent_id_t.

AMD_DBGAPI_QUEUE_INFO_PROCESS Return the process to which this queue belongs. The type of
this attribute is amd_dbgapi_process_id_t.

AMD_DBGAPI_QUEUE_INFO_ARCHITECTURE Return the architecture of this queue. The type of this
attribute is amd_dbgapi_architecture_id_t.

AMD_DBGAPI_QUEUE_INFO_TYPE Return the queue type. The type of this attribute is
uint32_t with values from
amd_dbgapi_os_queue_type_t.

AMD_DBGAPI_QUEUE_INFO_STATE Return the queue state. The type of this attribute is
uint32_t with values from amd_dbgapi_queue_state_t.

AMD_DBGAPI_QUEUE_INFO_ERROR_REASON Return the set of exceptions that caused the queue to enter
the queue error state. If the queue is not in the queue error
state then AMD_DBGAPI_EXCEPTION_NONE is returned.
The type of this attribute is uint32_t with values defined
by amd_dbgapi_exceptions_t.

AMD_DBGAPI_QUEUE_INFO_ADDRESS Return the base address of the memory holding the queue
packets. The type of this attribute is
amd_dbgapi_global_address_t.

AMD_DBGAPI_QUEUE_INFO_SIZE Return the size in bytes of the memory holding the queue
packets. The type of this attribute is amd_dbgapi_size_t.

AMD_DBGAPI_QUEUE_INFO_OS_ID Native operating system queue ID. The type of this attribute
is amd_dbgapi_os_queue_id_t.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.10 Queues 61

2.10.3.3 amd_dbgapi_queue_state_t

enum amd_dbgapi_queue_state_t

Queue state.

Enumerator

AMD_DBGAPI_QUEUE_STATE_VALID Queue is in a valid state.
AMD_DBGAPI_QUEUE_STATE_ERROR Queue is in the queue error state. No further waves will be started on

the queue. All waves that belong to the queue are inhibited from
executing further instructions regardless of whether they are in the
halt state.
When the inferior's runtime puts a queue into the queue error state, a
AMD_DBGAPI_EVENT_KIND_QUEUE_ERROR event will be
reported. In addition, any waves that belong to the queue that have
pending single step requests will cause a
AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED
event to be generated to indicate the single step has been cancelled.

2.10.4 Function Documentation

2.10.4.1 amd_dbgapi_process_queue_list()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_queue_list (

amd_dbgapi_process_id_t process_id,

size_t ∗ queue_count,

amd_dbgapi_queue_id_t ∗∗ queues,

amd_dbgapi_changed_t ∗ changed)

Return the list of queues.

The order of the queue handles in the list is unspecified and can vary between calls.

The queues of the process that are associated with agents that do not support debugging are not reported. See
AMD_DBGAPI_AGENT_STATE_NOT_SUPPORTED.

Parameters

in process_id If AMD_DBGAPI_PROCESS_NONE then the queue list for all processes is
requested. Otherwise, the queue list of process process_id is requested.

out queue_count The number of queues accessed by the process.

out queues If changed is not NULL and the queues list of all of the processes requested have
not changed since the last call(s) to amd_dbgapi_process_queue_list for each of
them, then return NULL. Otherwise, return a pointer to an array of
amd_dbgapi_queue_id_t with queue_count elements. It is allocated by the
amd_dbgapi_callbacks_s::allocate_memory callback and is owned by the client.

in,out changed If NULL then left unaltered. If non-NULL, set to AMD_DBGAPI_CHANGED_NO if the
list of queues for each requested process is the same as when
amd_dbgapi_process_queue_list was last called for them. Otherwise set to
AMD_DBGAPI_CHANGED_YES.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

62 Topic Documentation

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in changed, queue_count, and
queues.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized;
and queue_count, queues, and changed are
unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized; and queue_count, queues, and
changed are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_IDprocess_id is invalid. queue_count, queues,
and changed are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT queue_count or queues are NULL, or changed is
invalid. queue_count, queues, and changed are
unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate queues returns NULL.
queue_count, queues, and changed are
unaltered.

2.10.4.2 amd_dbgapi_queue_get_info()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_queue_get_info (

amd_dbgapi_queue_id_t queue_id,

amd_dbgapi_queue_info_t query,

size_t value_size,

void ∗ value)

Query information about a queue.

amd_dbgapi_queue_info_t specifies the queries supported and the type returned using the value argument.

Parameters

in queue_id The handle of the queue being queried.

in query The query being requested.

out value Pointer to memory where the query result is stored.

in value_size Size of the memory pointed to by value. Must be equal to the byte size of the query result.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in value.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and value is unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.10 Queues 63

Return values

AMD_DBGAPI_STATUS_ERROR_INVALID_QUEUE_ID queue_id is invalid. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT value is NULL or query is invalid. value is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYvalue_size does not match the size of the query
result. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate value returns NULL. value is
unaltered.

2.10.4.3 amd_dbgapi_queue_packet_list()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_queue_packet_list (

amd_dbgapi_queue_id_t queue_id,

amd_dbgapi_os_queue_packet_id_t ∗ read_packet_id,

amd_dbgapi_os_queue_packet_id_t ∗ write_packet_id,

size_t ∗ packets_byte_size,

void ∗∗ packets_bytes)

Return the packets for a queue.

Since the AMD GPU is asynchronously reading the packets this is only a snapshot of the packets present in the queue,
and only includes the packets that the producer has made available to the queue. In obtaining the snapshot the library
may pause the queue processing in order to get a consistent snapshot.

The queue packets are returned as a byte block that the client must interpret according to the packet ABI determined by
the queue type available using the AMD_DBGAPI_QUEUE_INFO_TYPE query. See amd_dbgapi_os_queue_type_t.

Parameters

in queue_id The queue for which the packet list is requested.

out read_packet_id The packet ID for the next packet to be read from the queue. It corresponds to the
first packet in packets_bytes. If packets_byte_size is zero, then the
packet ID for the next packet added to the queue.

out write_packet_id The packet ID for the next packet to be written to the queue. It corresponds to the
next packet after the last packet in packets_bytes. If packets_byte_size
is zero, then the packet ID for the next packet added to the queue.

out packets_byte_size The number of bytes of packets on the queue.

out packets_bytes If non-NULL, it references a pointer to an array of packets_byte_size bytes
which is allocated by the amd_dbgapi_callbacks_s::allocate_memory callback and is
owned by the client. If NULL, the packet bytes are not returned, just
packets_byte_size.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

64 Topic Documentation

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in read_packet_id,
write_packet_id, packets_byte_size and
packets_bytes.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized;
and read_packet_id, write_packet_id,
packets_byte_size and packets_bytes are
unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized; and read_packet_id,
write_packet_id, packets_byte_size and
packets_bytes are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT read_packet_id, write_packet_id, or
packets_byte_size are NULL.
read_packet_id, write_packet_id,
packets_byte_size and packets_bytes are
unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_SUPPORTED queue_id has a queue type that is not supported.
read_packet_id, write_packet_id,
packets_byte_size and packets_bytes are
unaltered.

AMD_DBGAPI_STATUS_ERROR An error was encountered when attempting to access
the queue queue_id. For example, the queue may be
corrupted. read_packet_id,
write_packet_id, packets_byte_size and
packets_bytes are unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate packets_bytes returns NULL.
read_packet_id, write_packet_id,
packets_byte_size and packets_bytes are
unaltered.

2.11 Dispatches

Operations related to AMD GPU dispatches.

Data Structures

• struct amd_dbgapi_dispatch_id_t

Opaque dispatch handle.

Macros

• #define AMD_DBGAPI_DISPATCH_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_dispatch_id_t, 0)

The NULL dispatch handle.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.11 Dispatches 65

Enumerations

• enum amd_dbgapi_dispatch_info_t {
AMD_DBGAPI_DISPATCH_INFO_QUEUE = 1 ,
AMD_DBGAPI_DISPATCH_INFO_AGENT = 2 ,
AMD_DBGAPI_DISPATCH_INFO_PROCESS = 3 ,
AMD_DBGAPI_DISPATCH_INFO_ARCHITECTURE = 4 ,
AMD_DBGAPI_DISPATCH_INFO_OS_QUEUE_PACKET_ID = 5 ,
AMD_DBGAPI_DISPATCH_INFO_BARRIER = 6 ,
AMD_DBGAPI_DISPATCH_INFO_ACQUIRE_FENCE = 7 ,
AMD_DBGAPI_DISPATCH_INFO_RELEASE_FENCE = 8 ,
AMD_DBGAPI_DISPATCH_INFO_GRID_DIMENSIONS = 9 ,
AMD_DBGAPI_DISPATCH_INFO_WORKGROUP_SIZES = 10 ,
AMD_DBGAPI_DISPATCH_INFO_GRID_SIZES = 11 ,
AMD_DBGAPI_DISPATCH_INFO_PRIVATE_SEGMENT_SIZE = 12 ,
AMD_DBGAPI_DISPATCH_INFO_GROUP_SEGMENT_SIZE = 13 ,
AMD_DBGAPI_DISPATCH_INFO_KERNEL_ARGUMENT_SEGMENT_ADDRESS = 14 ,
AMD_DBGAPI_DISPATCH_INFO_KERNEL_DESCRIPTOR_ADDRESS = 15 ,
AMD_DBGAPI_DISPATCH_INFO_KERNEL_CODE_ENTRY_ADDRESS = 16 ,
AMD_DBGAPI_DISPATCH_INFO_KERNEL_COMPLETION_ADDRESS = 17 }

Dispatch queries that are supported by amd_dbgapi_dispatch_get_info.

• enum amd_dbgapi_dispatch_barrier_t {
AMD_DBGAPI_DISPATCH_BARRIER_NONE = 0 ,
AMD_DBGAPI_DISPATCH_BARRIER_PRESENT = 1 }

Dispatch barrier.

• enum amd_dbgapi_dispatch_fence_scope_t {
AMD_DBGAPI_DISPATCH_FENCE_SCOPE_NONE = 0 ,
AMD_DBGAPI_DISPATCH_FENCE_SCOPE_AGENT = 1 ,
AMD_DBGAPI_DISPATCH_FENCE_SCOPE_SYSTEM = 2 }

Dispatch memory fence scope.

Functions

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_dispatch_get_info (amd_dbgapi_dispatch_id_t dispatch_id,
amd_dbgapi_dispatch_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_54

Query information about a dispatch.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_dispatch_list (amd_dbgapi_process_id_t process←↩

_id, size_t ∗dispatch_count, amd_dbgapi_dispatch_id_t ∗∗dispatches, amd_dbgapi_changed_t ∗changed)
AMD_DBGAPI_VERSION_0_54

Return the list of dispatches.

2.11.1 Detailed Description

Operations related to AMD GPU dispatches.

Dispatches are initiated by queue dispatch packets in the format supported by the queue. See amd_dbgapi_os_queue_type_t.
Dispatches are the means that waves are created on the AMD GPU.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

66 Topic Documentation

2.11.2 Macro Definition Documentation

2.11.2.1 AMD_DBGAPI_DISPATCH_NONE

#define AMD_DBGAPI_DISPATCH_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_dispatch_id_t, 0)

The NULL dispatch handle.

2.11.3 Enumeration Type Documentation

2.11.3.1 amd_dbgapi_dispatch_barrier_t

enum amd_dbgapi_dispatch_barrier_t

Dispatch barrier.

Controls when the dispatch will start being executed relative to previous packets on the queue.

Enumerator

AMD_DBGAPI_DISPATCH_BARRIER_NONE Dispatch has no barrier.

AMD_DBGAPI_DISPATCH_BARRIER_PRESENT Dispatch has a barrier. The dispatch will not be executed until
all proceeding packets on the queue have completed.

2.11.3.2 amd_dbgapi_dispatch_fence_scope_t

enum amd_dbgapi_dispatch_fence_scope_t

Dispatch memory fence scope.

Controls how memory is acquired before a dispatch starts executing and released after the dispatch completes execu-
tion.

Enumerator

AMD_DBGAPI_DISPATCH_FENCE_SCOPE_NONE There is no fence.
AMD_DBGAPI_DISPATCH_FENCE_SCOPE_AGENT There is a fence with agent memory scope.

AMD_DBGAPI_DISPATCH_FENCE_SCOPE_SYSTEM There is a fence with system memory scope.

2.11.3.3 amd_dbgapi_dispatch_info_t

enum amd_dbgapi_dispatch_info_t

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.11 Dispatches 67

Dispatch queries that are supported by amd_dbgapi_dispatch_get_info.

Each query specifies the type of data returned in the value argument to amd_dbgapi_queue_get_info.

Enumerator

AMD_DBGAPI_DISPATCH_INFO_QUEUE Return the queue to which this dispatch belongs. The
type of this attribute is amd_dbgapi_queue_id_t.

AMD_DBGAPI_DISPATCH_INFO_AGENT Return the agent to which this dispatch belongs. The
type of this attribute is amd_dbgapi_agent_id_t.

AMD_DBGAPI_DISPATCH_INFO_PROCESS Return the process to which this dispatch belongs. The
type of this attribute is amd_dbgapi_process_id_t.

AMD_DBGAPI_DISPATCH_INFO_ARCHITECTURE Return the architecture of this dispatch. The type of this
attribute is amd_dbgapi_architecture_id_t.

AMD_DBGAPI_DISPATCH_INFO_OS_QUEUE_←↩

PACKET_ID
Return the queue packet ID of the dispatch packet that
initiated the dispatch. The type of this attribute is
amd_dbgapi_os_queue_packet_id_t.

AMD_DBGAPI_DISPATCH_INFO_BARRIER Return the dispatch barrier setting. The type of this
attribute is uint32_t with values defined by
amd_dbgapi_dispatch_barrier_t.

AMD_DBGAPI_DISPATCH_INFO_ACQUIRE_FENCE Return the dispatch acquire fence. The type of this
attribute is uint32_t with values defined by
amd_dbgapi_dispatch_fence_scope_t.

AMD_DBGAPI_DISPATCH_INFO_RELEASE_FENCE Return the dispatch release fence. The type of this
attribute is uint32_t with values defined by
amd_dbgapi_dispatch_fence_scope_t.

AMD_DBGAPI_DISPATCH_INFO_GRID_DIMENSIONS
Return the dispatch grid dimensionality. The type of this
attribute is uint32 with a value of 1, 2, or 3.

AMD_DBGAPI_DISPATCH_INFO_WORKGROUP_←↩

SIZES
Return the dispatch workgroup size (work-items) in the
X, Y, and Z dimensions. The type of this attribute is
uint16_t[3].

AMD_DBGAPI_DISPATCH_INFO_GRID_SIZES Return the dispatch grid size (work-items) in the X, Y,
and Z dimensions. The type of this attribute is
uint32_t[3].

AMD_DBGAPI_DISPATCH_INFO_PRIVATE_←↩

SEGMENT_SIZE
Return the dispatch private segment size in bytes. The
type of this attribute is amd_dbgapi_size_t.

AMD_DBGAPI_DISPATCH_INFO_GROUP_←↩

SEGMENT_SIZE
Return the dispatch group segment size in bytes. The
type of this attribute is amd_dbgapi_size_t.

AMD_DBGAPI_DISPATCH_INFO_KERNEL_←↩

ARGUMENT_SEGMENT_ADDRESS
Return the dispatch kernel argument segment address.
The type of this attribute is
amd_dbgapi_global_address_t.

AMD_DBGAPI_DISPATCH_INFO_KERNEL_←↩

DESCRIPTOR_ADDRESS
Return the dispatch kernel descriptor address. The type
of this attribute is amd_dbgapi_global_address_t.

AMD_DBGAPI_DISPATCH_INFO_KERNEL_CODE_←↩

ENTRY_ADDRESS
Return the dispatch kernel code entry address. The
type of this attribute is amd_dbgapi_global_address_t.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

68 Topic Documentation

Enumerator

AMD_DBGAPI_DISPATCH_INFO_KERNEL_←↩

COMPLETION_ADDRESS
Return the dispatch completion event address. The type
of this attribute is amd_dbgapi_global_address_t. The
ABI of the completion event varies depending on the
queue type available using the
AMD_DBGAPI_QUEUE_INFO_TYPE query. See
amd_dbgapi_os_queue_type_t. If the queue type does
not use completion events, or the dispatch packet does
not define a completion event, then
amd_dbgapi_dispatch_get_info will return
AMD_DBGAPI_STATUS_ERROR_NOT_SUPPORTED.

2.11.4 Function Documentation

2.11.4.1 amd_dbgapi_dispatch_get_info()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_dispatch_get_info (

amd_dbgapi_dispatch_id_t dispatch_id,

amd_dbgapi_dispatch_info_t query,

size_t value_size,

void ∗ value)

Query information about a dispatch.

amd_dbgapi_dispatch_info_t specifies the queries supported and the type returned using the value argument.

Parameters

in dispatch←↩

_id
The handle of the dispatch being queried.

in query The query being requested.

in value_size Size of the memory pointed to by value. Must be equal to the byte size of the query result.

out value Pointer to memory where the query result is stored.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in value.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_DISPATCH_IDqueue_id is invalid. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_SUPPORTED The requested query is not supported for the specified
dispatch_id. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT value is NULL or query is invalid. value is
unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.11 Dispatches 69

Return values

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYvalue_size does not match the size of the query
result. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate value returns NULL. value is
unaltered.

2.11.4.2 amd_dbgapi_process_dispatch_list()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_dispatch_list (

amd_dbgapi_process_id_t process_id,

size_t ∗ dispatch_count,

amd_dbgapi_dispatch_id_t ∗∗ dispatches,

amd_dbgapi_changed_t ∗ changed)

Return the list of dispatches.

The order of the dispatch handles in the list is unspecified and can vary between calls.

Parameters

in process_id If AMD_DBGAPI_PROCESS_NONE then the dispatch list for all processes is
requested. Otherwise, the dispatch list of process process_id is requested.

out dispatch_count The number of dispatches active for a process.

out dispatches If changed is not NULL and the dispatch list of all of the processes requested
have not changed since the last call(s) to amd_dbgapi_process_dispatch_list for
each of them, then return NULL. Otherwise, return a pointer to an array of
amd_dbgapi_dispatch_id_t with dispatch_count elements. It is allocated by
the amd_dbgapi_callbacks_s::allocate_memory callback and is owned by the client.

in,out changed If NULL then left unaltered. If non-NULL, set to AMD_DBGAPI_CHANGED_NO if
the list of dispatches for each requested process is the same as when
amd_dbgapi_process_dispatch_list was last called for them. Otherwise, set to
AMD_DBGAPI_CHANGED_YES.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in changed, dispatch_count, and
dispatches.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized;
and changed, dispatch_count, and
dispatches are unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized; and changed, dispatch_count, and
dispatches are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_IDprocess_id is invalid. dispatch_count,
dispatches, and changed are unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

70 Topic Documentation

Return values

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT dispatch_count or dispatches are NULL, or
changed is invalid. dispatch_count,
dispatches, and changed are unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate dispatches returns NULL.
dispatch_count, dispatches, and changed
are unaltered.

2.12 Workgroup

Operations related to AMD GPU workgroups.

Data Structures

• struct amd_dbgapi_workgroup_id_t

Opaque workgroup handle.

Macros

• #define AMD_DBGAPI_WORKGROUP_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_workgroup_id_t,
0)

The NULL workgroup handle.

Enumerations

• enum amd_dbgapi_workgroup_info_t {
AMD_DBGAPI_WORKGROUP_INFO_DISPATCH = 1 ,
AMD_DBGAPI_WORKGROUP_INFO_QUEUE = 2 ,
AMD_DBGAPI_WORKGROUP_INFO_AGENT = 3 ,
AMD_DBGAPI_WORKGROUP_INFO_PROCESS = 4 ,
AMD_DBGAPI_WORKGROUP_INFO_ARCHITECTURE = 5 ,
AMD_DBGAPI_WORKGROUP_INFO_WORKGROUP_COORD = 6 }

Workgroup queries that are supported by amd_dbgapi_workgroup_get_info.

Functions

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_workgroup_get_info (amd_dbgapi_workgroup_id_t workgroup←↩

_id, amd_dbgapi_workgroup_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_64

Query information about a workgroup.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_workgroup_list (amd_dbgapi_process_id_t
process_id, size_t ∗workgroup_count, amd_dbgapi_workgroup_id_t ∗∗workgroups, amd_dbgapi_changed_t
∗changed) AMD_DBGAPI_VERSION_0_64

Return the list of existing workgroups.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.12 Workgroup 71

2.12.1 Detailed Description

Operations related to AMD GPU workgroups.

2.12.2 Macro Definition Documentation

2.12.2.1 AMD_DBGAPI_WORKGROUP_NONE

#define AMD_DBGAPI_WORKGROUP_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_workgroup_id_t, 0)

The NULL workgroup handle.

2.12.3 Enumeration Type Documentation

2.12.3.1 amd_dbgapi_workgroup_info_t

enum amd_dbgapi_workgroup_info_t

Workgroup queries that are supported by amd_dbgapi_workgroup_get_info.

Each query specifies the type of data returned in the value argument to amd_dbgapi_workgroup_get_info.

Enumerator

AMD_DBGAPI_WORKGROUP_INFO_DISPATCH Return the dispatch to which this workgroup belongs.
The type of this attribute is amd_dbgapi_dispatch_id_t.
If the dispatch associated with a workgroup is not
available then amd_dbgapi_workgroup_get_info returns
the
AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE
error. See the Known Limitations and Restrictions
section.

AMD_DBGAPI_WORKGROUP_INFO_QUEUE Return the queue to which this workgroup belongs. The
type of this attribute is amd_dbgapi_queue_id_t.

AMD_DBGAPI_WORKGROUP_INFO_AGENT Return the agent to which this workgroup belongs. The
type of this attribute is amd_dbgapi_agent_id_t.

AMD_DBGAPI_WORKGROUP_INFO_PROCESS Return the process to which this workgroup belongs.
The type of this attribute is amd_dbgapi_process_id_t.

AMD_DBGAPI_WORKGROUP_INFO_←↩

ARCHITECTURE
Return the architecture of this workgroup. The type of
this attribute is amd_dbgapi_architecture_id_t.

AMD_DBGAPI_WORKGROUP_INFO_←↩

WORKGROUP_COORD
The workgroup workgroup coordinate in the dispatch
grid dimensions. The type of this attribute is
uint32_t[3] with elements 1, 2, and 3 corresponding
to the X, Y, and Z coordinates respectively.
If the dispatch associated with a workgroup is not
available then amd_dbgapi_workgroup_get_info returns
AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE.
See the Known Limitations and Restrictions section.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

72 Topic Documentation

2.12.4 Function Documentation

2.12.4.1 amd_dbgapi_process_workgroup_list()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_workgroup_list (

amd_dbgapi_process_id_t process_id,

size_t ∗ workgroup_count,

amd_dbgapi_workgroup_id_t ∗∗ workgroups,

amd_dbgapi_changed_t ∗ changed)

Return the list of existing workgroups.

The order of the workgroup handles in the list is unspecified and can vary between calls.

Parameters

in process_id If AMD_DBGAPI_PROCESS_NONE then the workgroup list for all processes is
requested. Otherwise, the workgroup list of process process_id is requested.

out workgroup_count The number of workgroups executing in the process.

out workgroups If changed is not NULL and the workgroup list of all of the processes requested
have not changed since the last call(s) to amd_dbgapi_process_workgroup_list
for each of them, then return NULL. Otherwise, return a pointer to an array of
amd_dbgapi_workgroup_id_t with workgroup_count elements. It is
allocated by the amd_dbgapi_callbacks_s::allocate_memory callback and is
owned by the client.

in,out changed If NULL then left unaltered. If non-NULL, set to AMD_DBGAPI_CHANGED_NO if
the list of workgroups for each requested process is the same as when
amd_dbgapi_process_workgroup_list was last called for them. Otherwise, set to
AMD_DBGAPI_CHANGED_YES.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in changed, workgroup_count,
and workgroups.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized;
and changed, workgroup_count, and
workgroups are unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized; and workgroup_count,
workgroups, and changed are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_IDprocess_id is invalid. workgroup_count,
workgroups, and unchanged are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT workgroup_count or workgroups are NULL, or
changed is invalid. workgroup_count,
workgroups, and changed are unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate workgroups returns NULL.
workgroup_count, workgroups, and changed
are unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.13 Wave 73

2.12.4.2 amd_dbgapi_workgroup_get_info()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_workgroup_get_info (

amd_dbgapi_workgroup_id_t workgroup_id,

amd_dbgapi_workgroup_info_t query,

size_t value_size,

void ∗ value)

Query information about a workgroup.

amd_dbgapi_workgroup_info_t specifies the queries supported and the type returned using the value argument.

Parameters

in workgroup←↩

_id
The handle of the workgroup being queried.

in query The query being requested.

in value_size Size of the memory pointed to by value. Must be equal to the byte size of the query result.

out value Pointer to memory where the query result is stored.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in value.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_WORKGROUP_IDworkgroup_id is invalid. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT value is NULL or query is invalid. value is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYvalue_size does not match the size of the query
result. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE The requested information is not available. See
amd_dbgapi_workgroup_info_t for queries that can
produce this error. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate value returns NULL. value is
unaltered.

2.13 Wave

Operations related to AMD GPU waves.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

74 Topic Documentation

Data Structures

• struct amd_dbgapi_wave_id_t

Opaque wave handle.

Macros

• #define AMD_DBGAPI_WAVE_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_wave_id_t, 0)

The NULL wave handle.

Enumerations

• enum amd_dbgapi_wave_info_t {
AMD_DBGAPI_WAVE_INFO_STATE = 1 ,
AMD_DBGAPI_WAVE_INFO_STOP_REASON = 2 ,
AMD_DBGAPI_WAVE_INFO_WATCHPOINTS = 3 ,
AMD_DBGAPI_WAVE_INFO_WORKGROUP = 4 ,
AMD_DBGAPI_WAVE_INFO_DISPATCH = 5 ,
AMD_DBGAPI_WAVE_INFO_QUEUE = 6 ,
AMD_DBGAPI_WAVE_INFO_AGENT = 7 ,
AMD_DBGAPI_WAVE_INFO_PROCESS = 8 ,
AMD_DBGAPI_WAVE_INFO_ARCHITECTURE = 9 ,
AMD_DBGAPI_WAVE_INFO_PC = 10 ,
AMD_DBGAPI_WAVE_INFO_EXEC_MASK = 11 ,
AMD_DBGAPI_WAVE_INFO_WORKGROUP_COORD = 12 ,
AMD_DBGAPI_WAVE_INFO_WAVE_NUMBER_IN_WORKGROUP = 13 ,
AMD_DBGAPI_WAVE_INFO_LANE_COUNT = 14 }

Wave queries that are supported by amd_dbgapi_wave_get_info.

• enum amd_dbgapi_wave_state_t {
AMD_DBGAPI_WAVE_STATE_RUN = 1 ,
AMD_DBGAPI_WAVE_STATE_SINGLE_STEP = 2 ,
AMD_DBGAPI_WAVE_STATE_STOP = 3 }

The execution state of a wave.

• enum amd_dbgapi_wave_stop_reasons_t {
AMD_DBGAPI_WAVE_STOP_REASON_NONE = 0 ,
AMD_DBGAPI_WAVE_STOP_REASON_BREAKPOINT = (1 << 0) ,
AMD_DBGAPI_WAVE_STOP_REASON_WATCHPOINT = (1 << 1) ,
AMD_DBGAPI_WAVE_STOP_REASON_SINGLE_STEP = (1 << 2) ,
AMD_DBGAPI_WAVE_STOP_REASON_FP_INPUT_DENORMAL = (1 << 3) ,
AMD_DBGAPI_WAVE_STOP_REASON_FP_DIVIDE_BY_0 = (1 << 4) ,
AMD_DBGAPI_WAVE_STOP_REASON_FP_OVERFLOW = (1 << 5) ,
AMD_DBGAPI_WAVE_STOP_REASON_FP_UNDERFLOW = (1 << 6) ,
AMD_DBGAPI_WAVE_STOP_REASON_FP_INEXACT = (1 << 7) ,
AMD_DBGAPI_WAVE_STOP_REASON_FP_INVALID_OPERATION = (1 << 8) ,
AMD_DBGAPI_WAVE_STOP_REASON_INT_DIVIDE_BY_0 = (1 << 9) ,
AMD_DBGAPI_WAVE_STOP_REASON_DEBUG_TRAP = (1 << 10) ,
AMD_DBGAPI_WAVE_STOP_REASON_ASSERT_TRAP = (1 << 11) ,
AMD_DBGAPI_WAVE_STOP_REASON_TRAP = (1 << 12) ,
AMD_DBGAPI_WAVE_STOP_REASON_MEMORY_VIOLATION = (1 << 13) ,
AMD_DBGAPI_WAVE_STOP_REASON_ADDRESS_ERROR = (1 << 14) ,
DEPRECATED = AMD_DBGAPI_EXCEPTION_WAVE_ADDRESS_ERROR ,

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.13 Wave 75

AMD_DBGAPI_WAVE_STOP_REASON_ILLEGAL_INSTRUCTION = (1 << 15) ,
AMD_DBGAPI_WAVE_STOP_REASON_ECC_ERROR = (1 << 16) ,
AMD_DBGAPI_WAVE_STOP_REASON_FATAL_HALT = (1 << 17) }

A bit mask of the reasons that a wave stopped.

• enum amd_dbgapi_resume_mode_t {
AMD_DBGAPI_RESUME_MODE_NORMAL = 0 ,
AMD_DBGAPI_RESUME_MODE_SINGLE_STEP = 1 }

The mode in which to resuming the execution of a wave.

Functions

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_wave_get_info (amd_dbgapi_wave_id_t wave_id, amd_dbgapi_wave_info_t
query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_64

Query information about a wave.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_wave_list (amd_dbgapi_process_id_t process_id,
size_t ∗wave_count, amd_dbgapi_wave_id_t ∗∗waves, amd_dbgapi_changed_t ∗changed) AMD_DBGAPI_VERSION_0_54

Return the list of existing waves.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_wave_stop (amd_dbgapi_wave_id_t wave_id) AMD_DBGAPI_VERSION_0_76

Request a wave to stop executing.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_wave_resume (amd_dbgapi_wave_id_t wave_id, amd_dbgapi_resume_mode_t
resume_mode, amd_dbgapi_exceptions_t exceptions) AMD_DBGAPI_VERSION_0_76

Resume execution of a stopped wave.

2.13.1 Detailed Description

Operations related to AMD GPU waves.

2.13.2 Macro Definition Documentation

2.13.2.1 AMD_DBGAPI_WAVE_NONE

#define AMD_DBGAPI_WAVE_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_wave_id_t, 0)

The NULL wave handle.

2.13.3 Enumeration Type Documentation

2.13.3.1 amd_dbgapi_resume_mode_t

enum amd_dbgapi_resume_mode_t

The mode in which to resuming the execution of a wave.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

76 Topic Documentation

Enumerator

AMD_DBGAPI_RESUME_MODE_NORMAL Resume normal execution.
AMD_DBGAPI_RESUME_MODE_SINGLE_STEP Resume execution in in single step mode.

2.13.3.2 amd_dbgapi_wave_info_t

enum amd_dbgapi_wave_info_t

Wave queries that are supported by amd_dbgapi_wave_get_info.

Each query specifies the type of data returned in the value argument to amd_dbgapi_wave_get_info.

Enumerator

AMD_DBGAPI_WAVE_INFO_STATE Return the wave's state. The type of this attribute is
uint32_t with values define by
amd_dbgapi_wave_state_t.

AMD_DBGAPI_WAVE_INFO_STOP_REASON Return the reason the wave stopped as a bit set. The
type of this attribute is uint32_t with values defined
by amd_dbgapi_wave_stop_reasons_t. The wave must
be stopped to make this query.

AMD_DBGAPI_WAVE_INFO_WATCHPOINTS Return the watchpoint(s) the wave triggered. The type
of this attribute is amd_dbgapi_watchpoint_list_t. The
amd_dbgapi_watchpoint_list_t::count field is set to the
number of watchpoints that were triggered. The
amd_dbgapi_watchpoint_list_t::watchpoint_ids field is
set to a pointer to an array of
amd_dbgapi_watchpoint_id_t with
amd_dbgapi_watchpoint_list_t::count elements
comprising the triggered watchpoint handles. The array
is allocated by the
amd_dbgapi_callbacks_s::allocate_memory callback
and is owned by the client. The wave must be stopped
to make this query.

AMD_DBGAPI_WAVE_INFO_WORKGROUP Return the workgroup to which this wave belongs. The
type of this attribute is amd_dbgapi_workgroup_id_t.
If the workgroup associated with a wave is not available
then amd_dbgapi_wave_get_info returns the
AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE
error. See the Known Limitations and Restrictions
section.

AMD_DBGAPI_WAVE_INFO_DISPATCH Return the dispatch to which this wave belongs. The
type of this attribute is amd_dbgapi_dispatch_id_t.
If the dispatch associated with a wave is not available
then amd_dbgapi_wave_get_info returns the
AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE
error. See the Known Limitations and Restrictions
section.

AMD_DBGAPI_WAVE_INFO_QUEUE Return the queue to which this wave belongs. The type
of this attribute is amd_dbgapi_queue_id_t.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.13 Wave 77

Enumerator

AMD_DBGAPI_WAVE_INFO_AGENT Return the agent to which this wave belongs. The type
of this attribute is amd_dbgapi_agent_id_t.

AMD_DBGAPI_WAVE_INFO_PROCESS Return the process to which this wave belongs. The
type of this attribute is amd_dbgapi_process_id_t.

AMD_DBGAPI_WAVE_INFO_ARCHITECTURE Return the architecture of this wave. The type of this
attribute is amd_dbgapi_architecture_id_t.

AMD_DBGAPI_WAVE_INFO_PC Return the current program counter value of the wave.
The type of this attribute is
amd_dbgapi_global_address_t. The wave must be
stopped to make this query.

AMD_DBGAPI_WAVE_INFO_EXEC_MASK Return the current execution mask of the wave. Each bit
of the mask maps to a lane with the least significant bit
corresponding to the lane with a amd_dbgapi_lane_id_t
value of 0 and so forth. If the bit is 1 then the lane is
active, otherwise the lane is not active. The type of this
attribute is uint64_t. The wave must be stopped to
make this query.

AMD_DBGAPI_WAVE_INFO_WORKGROUP_COORD The wave workgroup coordinate in the dispatch grid
dimensions. The type of this attribute is uint32_t[3]
with elements 1, 2, and 3 corresponding to the X, Y, and
Z coordinates respectively.
If the dispatch associated with a wave is not available
then amd_dbgapi_wave_get_info returns
AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE.
See the Known Limitations and Restrictions section.

AMD_DBGAPI_WAVE_INFO_WAVE_NUMBER_IN_←↩

WORKGROUP
The wave's number in the workgroup. The type of this
attribute is uint32_t. The work-items of a workgroup
are mapped to the lanes of the waves of the workgroup
in flattened work-item ID order, with the first work-item
corresponding to lane 0 of wave 0, and so forth.
If the dispatch associated with a wave is not available
then amd_dbgapi_wave_get_info returns
AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE.
See the Known Limitations and Restrictions section.

AMD_DBGAPI_WAVE_INFO_LANE_COUNT The number of lanes supported by the wave. The type
of this attribute is size_t.

2.13.3.3 amd_dbgapi_wave_state_t

enum amd_dbgapi_wave_state_t

The execution state of a wave.

Enumerator

AMD_DBGAPI_WAVE_STATE_RUN The wave is running.

AMD_DBGAPI_WAVE_STATE_SINGLE_STEP The wave is running in single-step mode. It will execute a single
instruction and then stop.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

78 Topic Documentation

Enumerator

AMD_DBGAPI_WAVE_STATE_STOP The wave is stopped. Note that a wave may stop at any time due
to the instructions it executes or because the queue it is
executing on enters the error state. This will cause a
AMD_DBGAPI_EVENT_KIND_WAVE_STOP event to be
created. However, until
amd_dbgapi_process_next_pending_event returns the event,
the wave will continue to be reported as in the
AMD_DBGAPI_WAVE_STATE_RUN state. Only when the
AMD_DBGAPI_EVENT_KIND_WAVE_STOP event is returned
by amd_dbgapi_process_next_pending_event will the wave be
reported in the AMD_DBGAPI_WAVE_STATE_STOP state.

2.13.3.4 amd_dbgapi_wave_stop_reasons_t

enum amd_dbgapi_wave_stop_reasons_t

A bit mask of the reasons that a wave stopped.

The stop reason of a wave is available using the AMD_DBGAPI_WAVE_INFO_STOP_REASON query.

Enumerator

AMD_DBGAPI_WAVE_STOP_REASON_NONE If none of the bits are set, then amd_dbgapi_wave_stop
stopped the wave.

AMD_DBGAPI_WAVE_STOP_REASON_←↩

BREAKPOINT
The wave stopped due to executing a breakpoint
instruction. Use the
AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION_PC_ADJUST
query to determine the address of the breakpoint
instruction.

AMD_DBGAPI_WAVE_STOP_REASON_←↩

WATCHPOINT
The wave stopped due to triggering a data watchpoint.
The AMD_DBGAPI_WAVE_INFO_WATCHPOINTS
query can be used to determine which watchpoint(s)
were triggered.
The program counter may not be positioned at the
instruction that caused the watchpoint(s) to be triggered
as the AMD GPU can continue executing instructions
after initiating a memory operation. If the architecture
supports it, the amd_dbgapi_set_memory_precision
can be used to control the precision, but may
significantly reduce performance.

AMD_DBGAPI_WAVE_STOP_REASON_SINGLE_←↩

STEP
The wave stopped due to completing an instruction
single-step.

AMD_DBGAPI_WAVE_STOP_REASON_FP_INPUT←↩

_DENORMAL
The wave stopped due to triggering an enabled floating
point input denormal exception. This stop reason would
normally put the wave's queue into the queue error state
and include the
AMD_DBGAPI_EXCEPTION_WAVE_TRAP queue
error reason.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.13 Wave 79

Enumerator

AMD_DBGAPI_WAVE_STOP_REASON_FP_←↩

DIVIDE_BY_0
The wave stopped due to triggering an enabled floating
point divide by zero exception. This stop reason would
normally put the wave's queue into the queue error state
and include the
AMD_DBGAPI_EXCEPTION_WAVE_TRAP queue
error reason.

AMD_DBGAPI_WAVE_STOP_REASON_FP_←↩

OVERFLOW
The wave stopped due to triggering an enabled floating
point overflow exception. This stop reason would
normally put the wave's queue into the queue error state
and include the
AMD_DBGAPI_EXCEPTION_WAVE_TRAP queue
error reason.

AMD_DBGAPI_WAVE_STOP_REASON_FP_←↩

UNDERFLOW
The wave stopped due to triggering an enabled floating
point underflow exception. This stop reason would
normally put the wave's queue into the queue error state
and include the
AMD_DBGAPI_EXCEPTION_WAVE_TRAP queue
error reason.

AMD_DBGAPI_WAVE_STOP_REASON_FP_INEXACT
The wave stopped due to triggering an enabled floating
point inexact exception. This stop reason would
normally put the wave's queue into the queue error state
and include the
AMD_DBGAPI_EXCEPTION_WAVE_TRAP queue
error reason.

AMD_DBGAPI_WAVE_STOP_REASON_FP_←↩

INVALID_OPERATION
The wave stopped due to triggering an enabled floating
point invalid operation exception. This stop reason
would normally put the wave's queue into the queue
error state and include the
AMD_DBGAPI_EXCEPTION_WAVE_TRAP queue
error reason.

AMD_DBGAPI_WAVE_STOP_REASON_INT_←↩

DIVIDE_BY_0
The wave stopped due to triggering an enabled integer
divide by zero exception. This stop reason would
normally put the wave's queue into the queue error state
and include the
AMD_DBGAPI_EXCEPTION_WAVE_TRAP queue
error reason.

AMD_DBGAPI_WAVE_STOP_REASON_DEBUG_←↩

TRAP
The wave stopped due to executing a debug trap
instruction. The program counter is left positioned after
the trap instruction. The wave can be resumed using
amd_dbgapi_wave_resume.
The debug trap instruction can be generated using the
llvm.debugtrap compiler intrinsic. See [User
Guide for AMDGPU Backend - Code Conventions

• AMDHSA - Trap Handler ABI] (https←↩

://llvm.org/docs/AMDGPUUsage.←↩

html#trap-handler-abi).

A debug trap can be used to explicitly insert stop points
in a program to help debugging. They behave as no
operations if a debugger is not connected and stop the
wave if executed with the debugger attached.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

https://llvm.org/docs/AMDGPUUsage.html#trap-handler-abi
https://llvm.org/docs/AMDGPUUsage.html#trap-handler-abi
https://llvm.org/docs/AMDGPUUsage.html#trap-handler-abi

80 Topic Documentation

Enumerator

AMD_DBGAPI_WAVE_STOP_REASON_ASSERT_←↩

TRAP
The wave stopped due to executing an assert trap
instruction. The program counter is left positioned at the
assert trap instruction.
The trap instruction can be generated using the
llvm.trap compiler intrinsic. See [User Guide for
AMDGPU Backend - Code Conventions

• AMDHSA - Trap Handler ABI] (https←↩

://llvm.org/docs/AMDGPUUsage.←↩

html#trap-handler-abi).

An assert trap can be used to abort the execution of the
dispatches executing on a queue.
This stop reason would normally put the wave's queue
into the queue error state and include the
AMD_DBGAPI_EXCEPTION_WAVE_TRAP queue
error reason.

AMD_DBGAPI_WAVE_STOP_REASON_TRAP The wave
stopped due to executing a trap instruction other than the
AMD_DBGAPI_WAVE_STOP_REASON_DEBUG_TRAP
or
AMD_DBGAPI_WAVE_STOP_REASON_ASSERT_TRAP
trap instruction. The program counter is left positioned
at the trap instruction.
This stop reason would normally put the wave's queue
into the queue error state and include the
AMD_DBGAPI_EXCEPTION_WAVE_TRAP queue
error reason.

AMD_DBGAPI_WAVE_STOP_REASON_MEMORY_←↩

VIOLATION
The wave stopped due to a memory violation. It
indicates a non-existent page was accessed or a page
without the necessary permission (such as writing to a
readonly page or executing a non-execute page).
The program counter may not be positioned at the
instruction that caused the memory violation as the
AMD GPU can continue executing instructions after
initiating a memory operation. If the architecture
supports it, the amd_dbgapi_set_memory_precision
can be used to control the memory exception reporting
precision, but may significantly reduce performance.
This stop reason would normally put the wave's queue
into the queue error state and include the
AMD_DBGAPI_EXCEPTION_WAVE_MEMORY_VIOLATION
queue error reason.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

https://llvm.org/docs/AMDGPUUsage.html#trap-handler-abi
https://llvm.org/docs/AMDGPUUsage.html#trap-handler-abi
https://llvm.org/docs/AMDGPUUsage.html#trap-handler-abi

2.13 Wave 81

Enumerator

AMD_DBGAPI_WAVE_STOP_REASON_ADDRESS←↩

_ERROR
The wave stopped due to an aperture violation. It
indicates the memory address is outside the virtual
address range.
The program counter may not be positioned at the
instruction that caused the aperture violation as the
AMD GPU can continue executing instructions after
initiating a memory operation. If the architecture
supports it, the amd_dbgapi_set_memory_precision
can be used to control the precision, but may
significantly reduce performance.
This stop reason would normally put the wave's queue
into the queue error state and include the
AMD_DBGAPI_EXCEPTION_WAVE_ADDRESS_ERROR
queue error reason.

DEPRECATED Old deprecated name kept for backward compatibility.
Will be removed in a future release.

AMD_DBGAPI_WAVE_STOP_REASON_ILLEGAL_←↩

INSTRUCTION
The wave stopped due to executing an illegal
instruction. The program counter is left positioned at the
illegal instruction.
This stop reason would normally put the wave's queue
into the queue error state and include the
AMD_DBGAPI_EXCEPTION_WAVE_ILLEGAL_INSTRUCTION
queue error reason.

AMD_DBGAPI_WAVE_STOP_REASON_ECC_ERROR
The wave stopped due to detecting an unrecoverable
ECC error. The program counter may not be positioned
at the instruction that caused the memory violation as
the AMD GPU can continue executing instructions after
initiating a memory operation. If the architecture
supports it, the amd_dbgapi_set_memory_precision
can be used to control the precision, but may
significantly reduce performance.
This stop reason would normally put the wave's queue
into the queue error state and include the
AMD_DBGAPI_EXCEPTION_WAVE_TRAP queue
error reason.

AMD_DBGAPI_WAVE_STOP_REASON_FATAL_HALT The wave stopped after causing a hardware fatal halt.
This stop reason would normally put the wave's queue
into the queue error state and include the
AMD_DBGAPI_EXCEPTION_WAVE_TRAP queue
error reason.

2.13.4 Function Documentation

2.13.4.1 amd_dbgapi_process_wave_list()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_wave_list (

amd_dbgapi_process_id_t process_id,

size_t ∗ wave_count,

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

82 Topic Documentation

amd_dbgapi_wave_id_t ∗∗ waves,

amd_dbgapi_changed_t ∗ changed)

Return the list of existing waves.

The order of the wave handles in the list is unspecified and can vary between calls.

Parameters

in process_id If AMD_DBGAPI_PROCESS_NONE then the wave list for all processes is requested.
Otherwise, the wave list of process process_id is requested.

out wave_count The number of waves executing in the process.

out waves If changed is not NULL and the wave list of all of the processes requested have not
changed since the last call(s) to amd_dbgapi_process_wave_list for each of them, then
return NULL. Otherwise, return a pointer to an array of amd_dbgapi_wave_id_t with
wave_count elements. It is allocated by the
amd_dbgapi_callbacks_s::allocate_memory callback and is owned by the client.

in,out changed If NULL then left unaltered. If non-NULL, set to AMD_DBGAPI_CHANGED_NO if the
list of waves for each requested process is the same as when
amd_dbgapi_process_wave_list was last called for them. Otherwise, set to
AMD_DBGAPI_CHANGED_YES.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in changed, wave_count, and
waves.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized;
and changed, wave_count, and waves are
unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized; and wave_count, waves, and
changed are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_IDprocess_id is invalid. wave_count, waves, and
unchanged are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT wave_count or waves are NULL, or changed is
invalid. wave_count, waves, and changed are
unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate waves returns NULL. wave_count,
waves, and changed are unaltered.

2.13.4.2 amd_dbgapi_wave_get_info()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_wave_get_info (

amd_dbgapi_wave_id_t wave_id,

amd_dbgapi_wave_info_t query,

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.13 Wave 83

size_t value_size,

void ∗ value)

Query information about a wave.

amd_dbgapi_wave_info_t specifies the queries supported and the type returned using the value argument.

Parameters

in wave_id The handle of the wave being queried.

in query The query being requested.

in value_size Size of the memory pointed to by value. Must be equal to the byte size of the query result.

out value Pointer to memory where the query result is stored.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in value.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID wave_id is invalid. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT value is NULL or query is invalid. value is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYvalue_size does not match the size of the query
result. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE The requested information is not available. See
amd_dbgapi_wave_info_t for queries that can produce
this error. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_STOPPEDquery has a value of amd_dbgapi_wave_info_t that
requires the wave to be stopped, but the wave is not
stopped.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate value returns NULL. value is
unaltered.

2.13.4.3 amd_dbgapi_wave_resume()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_wave_resume (

amd_dbgapi_wave_id_t wave_id,

amd_dbgapi_resume_mode_t resume_mode,

amd_dbgapi_exceptions_t exceptions)

Resume execution of a stopped wave.

The wave can be resumed normally in which case it will be in the AMD_DBGAPI_WAVE_STATE_RUN state and be
available for the hardware to execute instructions. Just because it is in the run state does not mean the hardware will
start executing instructions immediately as that depends on the AMD GPU hardware scheduler.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

84 Topic Documentation

If while in the AMD_DBGAPI_WAVE_STATE_RUN state, the wave encounters something that stops its execution, or
amd_dbgapi_wave_stop is used to stop the wave execution, then a AMD_DBGAPI_EVENT_KIND_WAVE_STOP event
will be created.

If while in the AMD_DBGAPI_WAVE_STATE_RUN state the wave terminates, no event is created.

The wave can be resumed in single step mode in which case it will be in the AMD_DBGAPI_WAVE_STATE_SINGLE_STEP
state. It is available for the hardware to execute one instruction. After completing execution of a regular instruction,
a AMD_DBGAPI_EVENT_KIND_WAVE_STOP event will be created that indicates the wave has stopped. The stop
reason of the wave will include AMD_DBGAPI_WAVE_STOP_REASON_SINGLE_STEP. After completing execution
of a wave termination instruction, a AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED event will be
created that indicates that the wave has terminated.

Resuming a wave in single step mode does not necessarily cause it to execute any instructions as it is up to the AMD
GPU hardware scheduler to decide what waves to execute. For example, the AMD GPU hardware scheduler may not
execute any instructions of a wave until other waves have terminated. If the client has stopped other waves this can
prevent a wave from ever performing a single step. The client should handle this gracefully and not rely on a single step
request always resulting in a AMD_DBGAPI_EVENT_KIND_WAVE_STOP event. If necessary, the client should respond
to the stop events of other waves to allow them to make forward progress, and handle the single step stop request when
it finally arrives. If necessary, the client can cancel the single step request by using amd_dbgapi_wave_stop and allow
the user to attempt it again later when other waves have terminated.

It is an error to resume a wave that has terminated. The wave handle will be reported as invalid. It is up to the client to
use amd_dbgapi_process_wave_list to determine what waves have been created and terminated. No event is reported
when a wave is created or terminates.

It is an error to request a wave to resume that is not in the AMD_DBGAPI_WAVE_STATE_STOP state, or is in the
AMD_DBGAPI_WAVE_STATE_STOP state but the AMD_DBGAPI_EVENT_KIND_WAVE_STOP event that put it in the
stop state has not yet been completed using the amd_dbgapi_event_processed operation. Therefore, it is not allowed
to execute multiple resume requests as all but the first one will give an error.

It also means it is an error to resume a wave that has already stopped, but whose AMD_DBGAPI_EVENT_KIND_WAVE_STOP
event has not yet been returned by amd_dbgapi_process_next_pending_event, since the wave is still in the
AMD_DBGAPI_WAVE_STATE_RUN state. The AMD_DBGAPI_EVENT_KIND_WAVE_STOP must be processed
first.

Since a resume request can only be sent to a wave that has stopped, there is no issue of the wave terminating while
making the request. However, the wave may terminate after being resumed. Except for single stepping the wave
termination instruction described above, no event is reported when the wave terminates.

Resuming a wave that is in the halt state or belongs to a queue that is in the queue error state will not result in it
executing any further instructions. Resuming a wave in single step mode that does not belong to a queue that is in
the queue error state will therefore not report a AMD_DBGAPI_EVENT_KIND_WAVE_STOP event that includes the
AMD_DBGAPI_WAVE_STOP_REASON_SINGLE_STEP until the wave is no longer in the halt state.

Resuming a wave in single step mode that does belong to a queue that is in the queue error state, or if the queue
enters the queue error state after the wave has been resumed in single step mode but before it actually executes an
instruction, will report a AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED event to indicate that the
single step request has been cancelled. Waves in such queues are inhibited from executing any further instructions.
The application can delete the queue, which will result in all the associated waves to also be deleted, and then create a
new queue.

A wave may stop with stop reasons that would normally cause the inferior's runtime to put the queue into the queue
error state (see amd_dbgapi_wave_stop_reasons_t). However, when the AMD_DBGAPI_EVENT_KIND_WAVE_STOP
event is reported, the inferior's runtime will not have been notified, and so the exception will not have caused the queue

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.13 Wave 85

to enter the queue error state. This allows the user to inspect the wave state before the inferior's runtime may cause the
queue and all its waves to be deleted.

In order to deliver the stop reason exceptions to the inferior's runtime, the client can resume the wave and spec-
ify the exceptions using the exceptions argument. The client may use AMD_DBGAPI_EXCEPTION_NONE so
no exceptions are delivered, effectively ignoring the exceptions, or the client may pass different exceptions. The
client may also pass exceptions to any wave even if it did not stop with a stop reason that includes any excep-
tions. Note that resuming a wave and ignoring exceptions may result in unpredictable behavior. For example, the
AMD_DBGAPI_WAVE_STOP_REASON_ASSERT_TRAP stop reason assumes that execution will not be continued,
and so the following bytes may not be legal instructions, or may be unrelated instructions.

Parameters

in wave_id The wave being requested to resume.

in resume_mode If AMD_DBGAPI_RESUME_MODE_NORMAL, then resume normal execution of the
wave. If AMD_DBGAPI_RESUME_MODE_SINGLE_STEP, then resume the wave in
single step mode.

in exceptions If AMD_DBGAPI_EXCEPTION_NONE, indicates the wave execution is resumed without
delivering any exceptions. Any other value of amd_dbgapi_exceptions_t causes the wave
to be put in the halt state and the inferior's runtime notified of the specified exceptions.
The inferior's runtime will put the wave's queue into the queue error state such that the
queue's AMD_DBGAPI_QUEUE_INFO_ERROR_REASON query will include the
exceptions specified by exceptions. See AMD_DBGAPI_QUEUE_STATE_ERROR for
information in the events created when a queue is put in the queue error state.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
wave will either terminate or be stopped. In either case
a AMD_DBGAPI_EVENT_KIND_WAVE_STOP event
will be reported.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and no wave is resumed.

AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID wave_id is invalid. No wave is resumed.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT resume_mode is invalid or exceptions does not
contain only wave exceptions. No wave is resumed.

AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_STOPPEDwave_id is not stopped. The wave remains running.

AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_RESUMABLEThe event that put wave_id in the stop state has not
yet been completed using the
amd_dbgapi_event_processed operation.

AMD_DBGAPI_STATUS_ERROR_RESUME_DISPLACED_STEPPINGwave_id is stopped and has an associated displaced
stepping buffer. The resume_mode is either not
AMD_DBGAPI_RESUME_MODE_SINGLE_STEP, or
the wave_id has already been single stepped by one
instruction and so
amd_dbgapi_displaced_stepping_complete must be
used before the wave can be resumed.

AMD_DBGAPI_STATUS_ERROR_PROCESS_FROZEN The process the wave belongs to is frozen. No wave is
resumed.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

86 Topic Documentation

2.13.4.4 amd_dbgapi_wave_stop()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_wave_stop (

amd_dbgapi_wave_id_t wave_id)

Request a wave to stop executing.

The wave may or may not immediately stop. If the wave does not immediately stop, the stop request is termed
outstanding until the wave does stop or the wave terminates before stopping. When the wave does stop it will
create a AMD_DBGAPI_EVENT_KIND_WAVE_STOP event. If the wave terminates before stopping it will create a
AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED event.

A process in the AMD_DBGAPI_PROGRESS_NO_FORWARD progress mode will report the AMD_DBGAPI_EVENT_KIND_WAVE_STOP
or AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED event. It is not necessary to change the progress
mode to AMD_DBGAPI_PROGRESS_NORMAL for these events to be reported.

It is an error to request a wave to stop that has terminated. The wave handle will be reported as invalid. It is up to the
client to use amd_dbgapi_process_wave_list to determine what waves have been created and terminated. No event is
reported when a wave is created or terminates.

It is an error to request a wave to stop that is already in the AMD_DBGAPI_WAVE_STATE_STOP state.

It is an error to request a wave to stop for which there is an outstanding amd_dbgapi_wave_stop request.

Sending a stop request to a wave that has already stopped, but whose AMD_DBGAPI_EVENT_KIND_WAVE_STOP
event has not yet been returned by amd_dbgapi_process_next_pending_event, is allowed since the wave is
still in the AMD_DBGAPI_WAVE_STATE_RUN state. In this case the wave is not affected and the already
existing AMD_DBGAPI_EVENT_KIND_WAVE_STOP will notify the client that the stop request has completed.
The client must be prepared that a wave may stop for other reasons in response to a stop request. It can
use the AMD_DBGAPI_WAVE_INFO_STOP_REASON query to determine if there are other reason(s). See
AMD_DBGAPI_WAVE_STATE_STOP for more information.

Sending a stop request to a wave that is in the AMD_DBGAPI_WAVE_STATE_SINGLE_STEP state will attempt to stop
the wave and either report a AMD_DBGAPI_EVENT_KIND_WAVE_STOP or AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED
event. If the wave did stop, the setting of the AMD_DBGAPI_WAVE_STOP_REASON_SINGLE_STEP stop reason will
indicate whether the wave completed the single step. If the single step does complete, but terminates the wave, then
AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED will be reported.

Sending a stop request to a wave that is present at the time of the request, and does stop, will result in a
AMD_DBGAPI_EVENT_KIND_WAVE_STOP event.

Sending a stop request to a wave that is present at the time of the request, but terminates before completing the stop
request, will result in a AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED event.

Parameters

in wave←↩

_id
The wave being requested to stop.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.14 Displaced Stepping 87

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
wave will either
report a AMD_DBGAPI_EVENT_KIND_WAVE_STOP or
AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED
event.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and no wave is stopped.

AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID wave_id is invalid. No wave is stopped.

AMD_DBGAPI_STATUS_ERROR_WAVE_STOPPED wave_id is already stopped. The wave remains
stopped.

AMD_DBGAPI_STATUS_ERROR_WAVE_OUTSTANDING_STOPThe wave already has an outstanding stop request. This
stop request is ignored and the previous stop request
continues to stop the wave.

AMD_DBGAPI_STATUS_ERROR_PROCESS_FROZEN The process the wave belongs to is frozen. The wave is
already stopped. The wave remains stopped.

2.14 Displaced Stepping

Operations related to AMD GPU breakpoint displaced stepping.

Data Structures

• struct amd_dbgapi_displaced_stepping_id_t

Opaque displaced stepping handle.

Macros

• #define AMD_DBGAPI_DISPLACED_STEPPING_NONE (amd_dbgapi_displaced_stepping_id_t{ 0 })

The NULL displaced stepping handle.

Enumerations

• enum amd_dbgapi_displaced_stepping_info_t { AMD_DBGAPI_DISPLACED_STEPPING_INFO_PROCESS = 1
}

Displaced stepping queries that are supported by amd_dbgapi_displaced_stepping_id_t.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

88 Topic Documentation

Functions

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_displaced_stepping_get_info (amd_dbgapi_displaced_stepping_id_t
displaced_stepping_id, amd_dbgapi_displaced_stepping_info_t query, size_t value_size, void ∗value)
AMD_DBGAPI_VERSION_0_54

Query information about a displaced stepping buffer.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_displaced_stepping_start (amd_dbgapi_wave_id_t wave←↩

_id, const void ∗saved_instruction_bytes, amd_dbgapi_displaced_stepping_id_t ∗displaced_stepping)
AMD_DBGAPI_VERSION_0_76

Associate an active displaced stepping buffer with a wave.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_displaced_stepping_complete (amd_dbgapi_wave_id_t
wave_id, amd_dbgapi_displaced_stepping_id_t displaced_stepping) AMD_DBGAPI_VERSION_0_76

Complete a displaced stepping buffer for a wave.

2.14.1 Detailed Description

Operations related to AMD GPU breakpoint displaced stepping.

The library supports displaced stepping buffers. These allow an instruction that is overwritten by a breakpoint instruction
to be copied to a buffer and single stepped in that buffer. This avoids needing to remove the breakpoint instruction by
replacing it with the original instruction bytes, single stepping the original instruction, and finally restoring the breakpoint
instruction.

This allows a client to support non-stop debugging where waves are left executing while others are halted after hitting a
breakpoint. If resuming from a breakpoint involved removing the breakpoint, it could result in the running waves missing
the removed breakpoint.

When an instruction is copied into a displaced stepping buffer, it may be necessary to modify the instruction, or its
register inputs to account for the fact that it is executing at a different address. Similarly, after single stepping it, registers
and program counter may need adjusting. It may also be possible to know the effect of an instruction and avoid single
stepping it at all and simply update the wave state directly. For example, branches can be trivial to emulate this way.

The operations in this section allow displaced stepping buffers to be allocated and used. They will take care of all the
architecture specific details described above.

The number of displaced stepping buffers supported by the library is unspecified, but there is always at least one. It may
be possible for the library to share the same displaced stepping buffer with multiple waves. For example, if the waves
are at the same breakpoint. The library will determine when this is possible, but the client should not rely on this. Some
waves at the same breakpoint may be able to share while others may not. In general, it is best for the client to single
step as many waves as possible to minimize the time to get all waves stepped over the breakpoints.

The client may be able to maximize the number of waves it can single step at once by requesting displaced stepping
buffers for all waves at the same breakpoint. Just because there is no displaced stepping buffer for one wave, does
not mean another wave cannot be assigned to a displaced stepping buffer through sharing, or through buffers being
associated with specific agents or queues.

If allocating a displaced stepping buffer (amd_dbgapi_displaced_stepping_start) is successful, then the client must
resume the wave (amd_dbgapi_wave_resume) in single step mode. When the single step is reported as completed
(AMD_DBGAPI_EVENT_KIND_WAVE_STOP), the buffer can be released (amd_dbgapi_displaced_stepping_complete),
and the wave resumed normally (amd_dbgapi_wave_resume).

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.14 Displaced Stepping 89

If the single step is reported as terminated (AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED), then
that indicates that the wave has exited. When a wave exits, any associated displaced stepping buffer is automatically
released.

If the wave does not report the single step as complete (AMD_DBGAPI_EVENT_KIND_WAVE_STOP) or ter-
minated (AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED), then the wave can be stopped
(amd_dbgapi_wave_stop), and the buffer released (amd_dbgapi_displaced_stepping_complete). This will leave the
wave still at the breakpoint, and the client can retry stepping over the breakpoint later (amd_dbgapi_displaced_stepping_start).

If allocating a displaced stepping buffer indicates no more are available, the client must complete ongoing single step-
pings and release the associated buffers. It can do that by ensuring the waves with allocated stepping buffers are
resumed in single step mode, ensure that the waves will make forward progress, and process any reported pending
events. This allows waves to perform the single step, report the single step has completed by an event, and the client's
processing of the event will release the displaced stepping buffer (amd_dbgapi_displaced_stepping_complete). That
may free up a displaced stepping buffer for use by the client for other waves. Since there is always at least one dis-
placed stepping buffer, in general, the worst case is that one wave at a time can be single stepped over a breakpoint
using a displaced stepping buffer.

However, the weak forward progress of AMD GPU execution can result in no waves that have successfully been allocated
a displaced stepping buffer from actually reporting completion of the single step. For example, this can happen if the
waves being single stepped are prevented from becoming resident on the hardware due to other waves that are halted.
The waves being single stepped can be stopped before completing the single step to release the displaced stepping
buffer for use by a different set of waves. In the worst case, the user may have to continue halted waves and allow them
to terminate before other waves can make forward progress to complete the single step using a displaced stepping
buffer.

See also

amd_dbgapi_wave_resume, amd_dbgapi_wave_stop, amd_dbgapi_process_set_progress, amd_dbgapi_process_next_pending_event

2.14.2 Macro Definition Documentation

2.14.2.1 AMD_DBGAPI_DISPLACED_STEPPING_NONE

#define AMD_DBGAPI_DISPLACED_STEPPING_NONE (amd_dbgapi_displaced_stepping_id_t{ 0 })

The NULL displaced stepping handle.

2.14.3 Enumeration Type Documentation

2.14.3.1 amd_dbgapi_displaced_stepping_info_t

enum amd_dbgapi_displaced_stepping_info_t

Displaced stepping queries that are supported by amd_dbgapi_displaced_stepping_id_t.

Each query specifies the type of data returned in the value argument to amd_dbgapi_displaced_stepping_id_t.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

90 Topic Documentation

Enumerator

AMD_DBGAPI_DISPLACED_STEPPING_INFO_←↩

PROCESS
Return the process to which this displaced stepping
buffer belongs. The type of this attribute is
amd_dbgapi_process_id_t.

2.14.4 Function Documentation

2.14.4.1 amd_dbgapi_displaced_stepping_complete()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_displaced_stepping_complete (

amd_dbgapi_wave_id_t wave_id,

amd_dbgapi_displaced_stepping_id_t displaced_stepping)

Complete a displaced stepping buffer for a wave.

The wave must be stopped and have an associated displaced stepping buffer by using amd_dbgapi_displaced_stepping_start.

If the wave single step has not completed, the wave state is reset to what it was before amd_dbgapi_displaced_stepping_start.
The wave is left stopped and the client can retry stepping over the breakpoint again later.

If the single step has completed, then the wave state is updated to be after the instruction at which the breakpoint
instruction is placed.

Completing a displaced stepping buffer may read and write the wave program counter and other registers so the client
should invalidate any cached register values after completing a displaced stepping buffer. The wave is left stopped and
can be resumed normally by the client.

If the wave is the last one using the displaced stepping buffer, the buffer is freed and the handle invalidated.

Parameters

in wave_id The wave using the displaced stepping buffer.

in displaced_stepping The displaced stepping buffer to complete.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully. The
displaced stepping buffer is completed, and the wave is
either stepped over the breakpoint, or still at the
breakpoint.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized,
and no displaced stepping buffer is completed.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized, no displaced stepping buffer completed.

AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID wave_id is invalid. No displaced stepping buffer is
completed.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.14 Displaced Stepping 91

Return values

AMD_DBGAPI_STATUS_ERROR_INVALID_DISPLACED_STEPPING_IDdisplaced_stepping is invalid. No displaced
stepping buffer is completed.

AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_STOPPEDwave_id is not stopped. No displaced stepping buffer
is completed.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYdisplaced_stepping is not in use by wave_id
(which includes that the wave has already completed
the displaced stepping buffer). No displaced stepping
buffer is completed.

AMD_DBGAPI_STATUS_ERROR_PROCESS_FROZEN The process is frozen. No displaced stepping buffer is
completed.

2.14.4.2 amd_dbgapi_displaced_stepping_get_info()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_displaced_stepping_get_info (

amd_dbgapi_displaced_stepping_id_t displaced_stepping_id,

amd_dbgapi_displaced_stepping_info_t query,

size_t value_size,

void ∗ value)

Query information about a displaced stepping buffer.

amd_dbgapi_displaced_stepping_info_t specifies the queries supported and the type returned using the value argu-
ment.

Parameters

in displaced_stepping←↩

_id
The handle of the displaced stepping buffer being queried.

in query The query being requested.

in value_size Size of the memory pointed to by value. Must be equal to the byte size of the
query result.

out value Pointer to memory where the query result is stored.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in value.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_DISPLACED_STEPPING_IDdisplaced_stepping_id is invalid. value is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT value is NULL or query is invalid. value is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYvalue_size does not match the size of the query
result. value is unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

92 Topic Documentation

Return values

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate value returns NULL. value is
unaltered.

2.14.4.3 amd_dbgapi_displaced_stepping_start()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_displaced_stepping_start (

amd_dbgapi_wave_id_t wave_id,

const void ∗ saved_instruction_bytes,

amd_dbgapi_displaced_stepping_id_t ∗ displaced_stepping)

Associate an active displaced stepping buffer with a wave.

The wave must be stopped and not already have an active displaced stepping buffer.

Displaced stepping buffers are intended to be used to step over breakpoints. In that case, the wave will be stopped
with a program counter set to a breakpoint instruction that was placed by the client overwriting all or part of the original
instruction where the breakpoint was placed. The client must provide the overwritten bytes of the original instruction.

The wave program counter and other registers may be read and written as part of creating a displaced stepping buffer.
Therefore, the client should flush any dirty cached register values before creating a displaced stepping buffer.

If a displaced stepping handle is returned successfully, the wave is still stopped. The client should resume the
wave in single step mode using amd_dbgapi_wave_resume. Once the single step is complete as indicated by the
AMD_DBGAPI_EVENT_KIND_WAVE_STOP event with a stop reason that includes AMD_DBGAPI_WAVE_STOP_REASON_SINGLE_STEP,
the client should use amd_dbgapi_displaced_stepping_complete to release the displaced stepping buffer. The wave
can then be resumed normally using amd_dbgapi_wave_resume.

If the single step is cancelled by stopping the wave, the client must determine if the wave completed the single step to
determine if the wave can be resumed or must retry the displaced stepping later. See amd_dbgapi_wave_stop.

Parameters

in wave_id The wave for which to create a displaced stepping buffer.

in saved_instruction_bytes The original instruc-
tion bytes that the breakpoint instruction replaced. The number of bytes must be
AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION_SIZE.

out displaced_stepping The displaced stepping handle.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and
displaced_stepping is set to a valid displaced
stepping handle.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.15 Watchpoints 93

Return values

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized, no
displaced stepping buffer is allocated, and
displaced_stepping is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized, no displaced stepping buffer is allocated,
and displaced_stepping is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID wave_id is invalid. No displaced stepping buffer is
allocated and displaced_stepping is unaltered.

AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_STOPPEDwave_id is not stopped. No displaced stepping buffer
is allocated and displaced_stepping is
unaltered.

AMD_DBGAPI_STATUS_ERROR_DISPLACED_STEPPING_ACTIVEwave_id already has an active displaced stepping
buffer. No displaced stepping buffer is allocated and
displaced_stepping is unaltered.

AMD_DBGAPI_STATUS_ERROR_DISPLACED_STEPPING_BUFFER_NOT_AVAILABLENo more displaced stepping buffers are available that
are suitable for use by wave_id. No displaced
stepping buffer is allocated and
displaced_stepping is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT original_instruction or
displaced_stepping are NULL. No displaced
stepping buffer is allocated and
displaced_stepping is unaltered.

AMD_DBGAPI_STATUS_ERROR_MEMORY_ACCESS The memory at the wave's program counter could not
be successfully read. No displaced stepping buffer is
allocated and displaced_stepping is unaltered.

AMD_DBGAPI_STATUS_ERROR_ILLEGAL_INSTRUCTIONThe instruction at the wave's program counter is not a
legal instruction for the architecture. No displaced
stepping buffer is allocated and
displaced_stepping is unaltered.

AMD_DBGAPI_STATUS_ERROR_PROCESS_FROZEN The process is frozen. No displaced stepping buffer is
allocated and displaced_stepping is unaltered.

2.15 Watchpoints

Operations related to AMD GPU hardware data watchpoints.

Data Structures

• struct amd_dbgapi_watchpoint_id_t

Opaque hardware data watchpoint handle.

• struct amd_dbgapi_watchpoint_list_t

A set of watchpoints.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

94 Topic Documentation

Macros

• #define AMD_DBGAPI_WATCHPOINT_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_watchpoint_id_t,
0)

The NULL hardware data watchpoint handle.

Enumerations

• enum amd_dbgapi_watchpoint_info_t {
AMD_DBGAPI_WATCHPOINT_INFO_PROCESS = 1 ,
AMD_DBGAPI_WATCHPOINT_INFO_ADDRESS = 2 ,
AMD_DBGAPI_WATCHPOINT_INFO_SIZE = 3 }

Watchpoint queries that are supported by amd_dbgapi_watchpoint_get_info.
• enum amd_dbgapi_watchpoint_share_kind_t {

AMD_DBGAPI_WATCHPOINT_SHARE_KIND_UNSUPPORTED = 0 ,
AMD_DBGAPI_WATCHPOINT_SHARE_KIND_UNSHARED = 1 ,
AMD_DBGAPI_WATCHPOINT_SHARE_KIND_SHARED = 2 }

The way watchpoints are shared between processes.
• enum amd_dbgapi_watchpoint_kind_t {

AMD_DBGAPI_WATCHPOINT_KIND_LOAD = 1 ,
AMD_DBGAPI_WATCHPOINT_KIND_STORE_AND_RMW = 2 ,
AMD_DBGAPI_WATCHPOINT_KIND_RMW = 3 ,
AMD_DBGAPI_WATCHPOINT_KIND_ALL = 4 }

Watchpoint memory access kinds.

Functions

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_watchpoint_get_info (amd_dbgapi_watchpoint_id_t watchpoint←↩

_id, amd_dbgapi_watchpoint_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_54

Query information about a watchpoint.
• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_set_watchpoint (amd_dbgapi_process_id_t process_←↩

id, amd_dbgapi_global_address_t address, amd_dbgapi_size_t size, amd_dbgapi_watchpoint_kind_t kind,
amd_dbgapi_watchpoint_id_t ∗watchpoint_id) AMD_DBGAPI_VERSION_0_76

Set a hardware data watchpoint.
• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_remove_watchpoint (amd_dbgapi_watchpoint_id_t watchpoint←↩

_id) AMD_DBGAPI_VERSION_0_76

Remove a hardware data watchpoint previously set by amd_dbgapi_set_watchpoint.

2.15.1 Detailed Description

Operations related to AMD GPU hardware data watchpoints.

A data watchpoint is a hardware supported mechanism to generate wave stop events after a wave accesses memory in
a certain way in a certain address range. The memory access will have been completed before the event is reported.

The number of watchpoints, the granularity of base address, and the address range is process specific. If a process
has multiple agents, then the values are the lowest common denominator of the capabilities of the architectures of all
the agents of a process.

The number of watchpoints supported by a process is available using the AMD_DBGAPI_PROCESS_INFO_WATCHPOINT_COUNT
query and may be 0. The AMD_DBGAPI_PROCESS_INFO_WATCHPOINT_SHARE query can be used to determine
if watchpoints are shared between processes.

When a wave stops due to a data watchpoint the stop reason will include AMD_DBGAPI_WAVE_STOP_REASON_WATCHPOINT.
The set of watchpoints triggered can be queried using AMD_DBGAPI_WAVE_INFO_WATCHPOINTS.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.15 Watchpoints 95

2.15.2 Macro Definition Documentation

2.15.2.1 AMD_DBGAPI_WATCHPOINT_NONE

#define AMD_DBGAPI_WATCHPOINT_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_watchpoint_id_t, 0)

The NULL hardware data watchpoint handle.

2.15.3 Enumeration Type Documentation

2.15.3.1 amd_dbgapi_watchpoint_info_t

enum amd_dbgapi_watchpoint_info_t

Watchpoint queries that are supported by amd_dbgapi_watchpoint_get_info.

Each query specifies the type of data returned in the value argument to amd_dbgapi_watchpoint_get_info.

Enumerator

AMD_DBGAPI_WATCHPOINT_INFO_PROCESS Return the process to which this watchpoint belongs. The
type of this attribute is amd_dbgapi_process_id_t.

AMD_DBGAPI_WATCHPOINT_INFO_ADDRESS The base address of the created watchpoint. The type of this
attribute is amd_dbgapi_global_address_t.

AMD_DBGAPI_WATCHPOINT_INFO_SIZE The byte size of the created watchpoint. The type of this
attribute is amd_dbgapi_size_t.

2.15.3.2 amd_dbgapi_watchpoint_kind_t

enum amd_dbgapi_watchpoint_kind_t

Watchpoint memory access kinds.

The watchpoint is triggered only when the memory instruction is of the specified kind.

Enumerator

AMD_DBGAPI_WATCHPOINT_KIND_LOAD Read access by load instructions.

AMD_DBGAPI_WATCHPOINT_KIND_STORE_AND←↩

_RMW
Write access by store instructions or read-modify-write
access by atomic instructions.

AMD_DBGAPI_WATCHPOINT_KIND_RMW Read-modify-write access by atomic instructions.

AMD_DBGAPI_WATCHPOINT_KIND_ALL Read, write, or read-modify-write access by load, store,
or atomic instructions.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

96 Topic Documentation

2.15.3.3 amd_dbgapi_watchpoint_share_kind_t

enum amd_dbgapi_watchpoint_share_kind_t

The way watchpoints are shared between processes.

The AMD_DBGAPI_PROCESS_INFO_WATCHPOINT_SHARE query can be used to determine the watchpoint sharing
for an architecture.

Enumerator

AMD_DBGAPI_WATCHPOINT_SHARE_KIND_←↩

UNSUPPORTED
Watchpoints are not supported.

AMD_DBGAPI_WATCHPOINT_SHARE_KIND_←↩

UNSHARED
The watchpoints are not shared across processes.
Every process can use all
AMD_DBGAPI_PROCESS_INFO_WATCHPOINT_COUNT
watchpoints.

AMD_DBGAPI_WATCHPOINT_SHARE_KIND_←↩

SHARED
The watchpoints of a process are shared between all
processes. The number of watchpoints available to a
process may be reduced if watchpoints are used by
another process.

2.15.4 Function Documentation

2.15.4.1 amd_dbgapi_remove_watchpoint()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_remove_watchpoint (

amd_dbgapi_watchpoint_id_t watchpoint_id)

Remove a hardware data watchpoint previously set by amd_dbgapi_set_watchpoint.

Parameters

in watchpoint←↩

_id
The watchpoint to remove.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
watchpoint has been removed.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and no watchpoint is removed.

AMD_DBGAPI_STATUS_ERROR_INVALID_WATCHPOINT_IDwatchpoint_id is invalid. No watchpoint is
removed.

AMD_DBGAPI_STATUS_ERROR_PROCESS_FROZEN This operation is not allowed when the process is
frozen. No watchpoint is removed.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.15 Watchpoints 97

2.15.4.2 amd_dbgapi_set_watchpoint()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_set_watchpoint (

amd_dbgapi_process_id_t process_id,

amd_dbgapi_global_address_t address,

amd_dbgapi_size_t size,

amd_dbgapi_watchpoint_kind_t kind,

amd_dbgapi_watchpoint_id_t ∗ watchpoint_id)

Set a hardware data watchpoint.

The AMD GPU has limitations on the base address and size of hardware data watchpoints that can be set, and the
limitations may vary by architecture. A watchpoint is created with the smallest range, supported by the architectures of
all the agents of a process, that covers the requested range specified by address and size.

If the requested range is larger than is supported by the architectures of all the agents of a process, then a watchpoint
is created with the smallest range that includes address and covers as much of the requested range as possible.

The range of the created watchpoint can be queried using AMD_DBGAPI_WATCHPOINT_INFO_PROCESS and
AMD_DBGAPI_WATCHPOINT_INFO_SIZE. The client is responsible for determining if the created watchpoint com-
pletely covers the requested range. If it does not, the client can attempt to create additional watchpoints for the uncov-
ered portion of the requested range.

When a watchpoint is triggered, the client is responsible for determining if the access was to the requested range. For
example, for writes the client can compare the original value with the current value to determine if it changed.

Each process has its own set of watchpoints. Only waves executing on the agents of a process will trigger the watch-
points set on that process.

Parameters

in process_id The process on which to set the watchpoint.

in address The base address of memory area to set a watchpoint.

in size The non-zero number of bytes that the watchpoint should cover.

in kind The kind of memory access that should trigger the watchpoint.

out watchpoint←↩

_id
The watchpoint created.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
watchpoint has been created with handle
watchpoint_id.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized;
and watchpoint_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized; and watchpoint_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_IDprocess_id is invalid. No watchpoint is set and
watchpoint_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_NO_WATCHPOINT_AVAILABLENo more watchpoints are available. No watchpoint is set
and watchpoint_id is unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

98 Topic Documentation

Return values

AMD_DBGAPI_STATUS_ERROR_NOT_SUPPORTED Watchpoints are not supported for the architectures of
all the agents. No watchpoint is set and
watchpoint_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT kind is invalid; size is 0 or watchpoint_id is
NULL. No watchpoint is set and watchpoint_id is
unaltered.

AMD_DBGAPI_STATUS_ERROR_PROCESS_FROZEN This operation is not permitted when the process frozen.
No watchpoint is set and watchpoint_id is
unaltered.

2.15.4.3 amd_dbgapi_watchpoint_get_info()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_watchpoint_get_info (

amd_dbgapi_watchpoint_id_t watchpoint_id,

amd_dbgapi_watchpoint_info_t query,

size_t value_size,

void ∗ value)

Query information about a watchpoint.

amd_dbgapi_watchpoint_info_t specifies the queries supported and the type returned using the value argument.

Parameters

in watchpoint←↩

_id
The handle of the watchpoint being queried.

in query The query being requested.

in value_size Size of the memory pointed to by value. Must be equal to the byte size of the query result.

out value Pointer to memory where the query result is stored.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in value.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_WATCHPOINT_IDwatchpoint_id is invalid. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT value is NULL or query is invalid. value is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYvalue_size does not match the size of the query
result. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate value returns NULL. value is
unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.16 Registers 99

2.16 Registers

Operations related to AMD GPU register access.

Data Structures

• struct amd_dbgapi_register_class_id_t

Opaque register class handle.

• struct amd_dbgapi_register_id_t

Opaque register handle.

• struct amd_dbgapi_direct_call_register_pair_information_t

Instruction information for direct call instructions.

Macros

• #define AMD_DBGAPI_REGISTER_CLASS_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_register_class_id_t,
0)

The NULL register class handle.

• #define AMD_DBGAPI_REGISTER_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_register_id_t, 0)

The NULL register handle.

Enumerations

• enum amd_dbgapi_register_class_info_t {
AMD_DBGAPI_REGISTER_CLASS_INFO_ARCHITECTURE = 1 ,
AMD_DBGAPI_REGISTER_CLASS_INFO_NAME = 2 }

Register class queries that are supported by amd_dbgapi_architecture_register_class_get_info.

• enum amd_dbgapi_register_properties_t {
AMD_DBGAPI_REGISTER_PROPERTY_NONE = 0 ,
AMD_DBGAPI_REGISTER_PROPERTY_READONLY_BITS = (1 << 0) ,
AMD_DBGAPI_REGISTER_PROPERTY_VOLATILE = (1 << 1) ,
AMD_DBGAPI_REGISTER_PROPERTY_INVALIDATE_VOLATILE = (1 << 2) }

A bit mask on register properties.

• enum amd_dbgapi_register_info_t {
AMD_DBGAPI_REGISTER_INFO_ARCHITECTURE = 1 ,
AMD_DBGAPI_REGISTER_INFO_NAME = 2 ,
AMD_DBGAPI_REGISTER_INFO_SIZE = 3 ,
AMD_DBGAPI_REGISTER_INFO_TYPE = 4 ,
AMD_DBGAPI_REGISTER_INFO_DWARF = 5 ,
AMD_DBGAPI_REGISTER_INFO_PROPERTIES = 6 }

Register queries that are supported by amd_dbgapi_register_get_info.

• enum amd_dbgapi_register_exists_t {
AMD_DBGAPI_REGISTER_ABSENT = 0 ,
AMD_DBGAPI_REGISTER_PRESENT = 1 }

Indication of if a wave has a register.

• enum amd_dbgapi_register_class_state_t {
AMD_DBGAPI_REGISTER_CLASS_STATE_NOT_MEMBER = 0 ,
AMD_DBGAPI_REGISTER_CLASS_STATE_MEMBER = 1 }

Indication of whether a register is a member of a register class.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

100 Topic Documentation

Functions

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_register_class_get_info (amd_dbgapi_register_class_id_t
register_class_id, amd_dbgapi_register_class_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_54

Query information about a register class of an architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_register_class_list (amd_dbgapi_architecture_id_t
architecture_id, size_t ∗register_class_count, amd_dbgapi_register_class_id_t ∗∗register_classes) AMD_DBGAPI_VERSION_0_54

Report the list of register classes supported by the architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_register_get_info (amd_dbgapi_register_id_t register_id,
amd_dbgapi_register_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_70

Query information about a register.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_wave_register_exists (amd_dbgapi_wave_id_t wave_id,
amd_dbgapi_register_id_t register_id, amd_dbgapi_register_exists_t ∗exists) AMD_DBGAPI_VERSION_0_54

Query if a register exists for a wave.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_register_list (amd_dbgapi_architecture_id_t
architecture_id, size_t ∗register_count, amd_dbgapi_register_id_t ∗∗registers) AMD_DBGAPI_VERSION_0_54

Report the list of registers supported by the architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_wave_register_list (amd_dbgapi_wave_id_t wave_id, size_←↩

t ∗register_count, amd_dbgapi_register_id_t ∗∗registers) AMD_DBGAPI_VERSION_0_54

Report the list of registers supported by a wave.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_dwarf_register_to_register (amd_dbgapi_architecture_id_t
architecture_id, uint64_t dwarf_register, amd_dbgapi_register_id_t ∗register_id) AMD_DBGAPI_VERSION_0_54

Return a register handle from an AMD GPU DWARF register number for an architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_register_is_in_register_class (amd_dbgapi_register_class_id_t
register_class_id, amd_dbgapi_register_id_t register_id, amd_dbgapi_register_class_state_t ∗register_class_←↩

state) AMD_DBGAPI_VERSION_0_54

Determine if a register is a member of a register class.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_read_register (amd_dbgapi_wave_id_t wave_id, amd_dbgapi_register_id_t
register_id, amd_dbgapi_size_t offset, amd_dbgapi_size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_62

Read a register.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_write_register (amd_dbgapi_wave_id_t wave_id, amd_dbgapi_register_id_t
register_id, amd_dbgapi_size_t offset, amd_dbgapi_size_t value_size, const void ∗value) AMD_DBGAPI_VERSION_0_76

Write a register.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_prefetch_register (amd_dbgapi_wave_id_t wave_id,
amd_dbgapi_register_id_t register_id, amd_dbgapi_size_t register_count) AMD_DBGAPI_VERSION_0_62

Prefetch register values.

2.16.1 Detailed Description

Operations related to AMD GPU register access.

2.16.2 Macro Definition Documentation

2.16.2.1 AMD_DBGAPI_REGISTER_CLASS_NONE

#define AMD_DBGAPI_REGISTER_CLASS_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_register_class_id_t,

0)

The NULL register class handle.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.16 Registers 101

2.16.2.2 AMD_DBGAPI_REGISTER_NONE

#define AMD_DBGAPI_REGISTER_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_register_id_t, 0)

The NULL register handle.

2.16.3 Enumeration Type Documentation

2.16.3.1 amd_dbgapi_register_class_info_t

enum amd_dbgapi_register_class_info_t

Register class queries that are supported by amd_dbgapi_architecture_register_class_get_info.

Each query specifies the type of data returned in the value argument to amd_dbgapi_architecture_register_class_get_info.

Enumerator

AMD_DBGAPI_REGISTER_CLASS_INFO_←↩

ARCHITECTURE
Return the architecture to which this register class
belongs. The type of this attribute is
amd_dbgapi_architecture_id_t.

AMD_DBGAPI_REGISTER_CLASS_INFO_NAME Return the register class name. The type of this attribute
is a pointer to a NUL terminated char. It is allocated by
the amd_dbgapi_callbacks_s::allocate_memory
callback and is owned by the client.

2.16.3.2 amd_dbgapi_register_class_state_t

enum amd_dbgapi_register_class_state_t

Indication of whether a register is a member of a register class.

Enumerator

AMD_DBGAPI_REGISTER_CLASS_STATE_NOT_MEMBER The register is not a member of the register class.

AMD_DBGAPI_REGISTER_CLASS_STATE_MEMBER The register is a member of the register class.

2.16.3.3 amd_dbgapi_register_exists_t

enum amd_dbgapi_register_exists_t

Indication of if a wave has a register.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

102 Topic Documentation

Enumerator

AMD_DBGAPI_REGISTER_ABSENT The wave does not have the register.

AMD_DBGAPI_REGISTER_PRESENT The wave has the register.

2.16.3.4 amd_dbgapi_register_info_t

enum amd_dbgapi_register_info_t

Register queries that are supported by amd_dbgapi_register_get_info.

Each query specifies the type of data returned in the value argument to amd_dbgapi_register_get_info.

Enumerator

AMD_DBGAPI_REGISTER_INFO_ARCHITECTURE Return the architecture to which this register belongs.
The type of this attribute is
amd_dbgapi_architecture_id_t.

AMD_DBGAPI_REGISTER_INFO_NAME Return the register name. The type of this attribute is a
pointer to a NUL terminated char. It is allocated by the
amd_dbgapi_callbacks_s::allocate_memory callback
and is owned by the client.

AMD_DBGAPI_REGISTER_INFO_SIZE Return the size of the register in bytes. The type of this
attribute is amd_dbgapi_size_t.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.16 Registers 103

Enumerator

AMD_DBGAPI_REGISTER_INFO_TYPE Return the register type as a C style type string. This
can be used as the default type to use when displaying
values of the register. The type string syntax is defined
by the following BNF syntax:

type ::= integer_type
| float_type
| function_type
| flag_type
| array_type

array_type ::= (integer_type
| float_type
| function_type
| flag_type
) "[" element_count "]"

element_count ::= DECIMAL_NUMBER
integer_type ::= "uint32_t"

| "uint64_t"
float_type ::= "float"

| "double"
function_type ::= "void(void)"
flag_type ::= ("flags32_t"

| "flags64_t"
)
type_name
["{" [fields] "}"]

fields ::= field ";" [fields]
field ::= "bool" field_name

"@" bit_position
| (integer_type
| enum_type
)
field_name
"@" bit_position
"-" bit_position

field_name ::= IDENTIFIER
enum_type ::= "enum" type_name

["{" [enum_values] "}"]
enum_values ::= enum_value ["," enum_values]
enum_value ::= enum_name "=" enum_ordinal
enum_name ::= IDENTIFIER
enum_ordinal ::= DECIMAL_NUMBER
type_name ::= IDENTIFIER
bit_position ::= DECIMAL_NUMBER

IDENTIFIER is string starting with an alphabetic
character followed by zero or more alphabetic, numeric,
"_", or "." characters.
DECIMAL_NUMBER is a decimal C integral literal.
Whitespace is allowed between lexical tokens.
The type size matches the size of the register.
uint32, float, and flag32 types are 4 bytes.
unit64, double, and flag64 types are 8 bytes.
void(void) is the size of a global address.
The type of this attribute is a pointer to a NUL
terminated char. It is allocated by the
amd_dbgapi_callbacks_s::allocate_memory callback
and is owned by the client.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

104 Topic Documentation

Enumerator

AMD_DBGAPI_REGISTER_INFO_DWARF Return the AMD GPU DWARF register number for the
register's architecture. The type of this attribute is
uint64_t.
If the requested register has no associated DWARF
register number, then amd_dbgapi_register_get_info
returns the
AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE
error.

AMD_DBGAPI_REGISTER_INFO_PROPERTIES Return the register's properties. The type of this
attribute is uint32_t with values defined by
amd_dbgapi_register_properties_t.

2.16.3.5 amd_dbgapi_register_properties_t

enum amd_dbgapi_register_properties_t

A bit mask on register properties.

The properties of a register are available using the AMD_DBGAPI_REGISTER_INFO_PROPERTIES query.

Enumerator

AMD_DBGAPI_REGISTER_PROPERTY_NONE There are no properties.

AMD_DBGAPI_REGISTER_PROPERTY_←↩

READONLY_BITS
At least one bit of the register value is readonly. It is
advisable for the client to read the register after writing it
to determine the value of the readonly bits.

AMD_DBGAPI_REGISTER_PROPERTY_VOLATILE The register value may change as a consequence of
changing a register of the same wavefront with the
AMD_DBGAPI_REGISTER_PROPERTY_INVALIDATE_VOLATILE
property. It is advisable for the client to not cache the
value of the register.

AMD_DBGAPI_REGISTER_PROPERTY_←↩

INVALIDATE_VOLATILE
Changing the value of the register may change a
register of the same wavefront with the
AMD_DBGAPI_REGISTER_PROPERTY_VOLATILE
property. It is advisable to invalidate any cached
registers with the
AMD_DBGAPI_REGISTER_PROPERTY_VOLATILE
property.

2.16.4 Function Documentation

2.16.4.1 amd_dbgapi_architecture_register_class_get_info()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_register_class_get_info (

amd_dbgapi_register_class_id_t register_class_id,

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.16 Registers 105

amd_dbgapi_register_class_info_t query,

size_t value_size,

void ∗ value)

Query information about a register class of an architecture.

amd_dbgapi_register_class_info_t specifies the queries supported and the type returned using the value argument.

Parameters

in register_class←↩

_id
The handle of the register class being queried.

in query The query being requested.

in value_size Size of the memory pointed to by value. Must be equal to the byte size of the query
result.

out value Pointer to memory where the query result is stored.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in value.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_REGISTER_CLASS_IDregister_class_id is invalid. value is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT value is NULL or query is invalid. value is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYvalue_size does not match the size of the query
result. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate value returns NULL. value is
unaltered.

2.16.4.2 amd_dbgapi_architecture_register_class_list()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_register_class_list (

amd_dbgapi_architecture_id_t architecture_id,

size_t ∗ register_class_count,

amd_dbgapi_register_class_id_t ∗∗ register_classes)

Report the list of register classes supported by the architecture.

The order of the register handles in the list is stable between calls.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

106 Topic Documentation

Parameters

in architecture_id The architecture being queried.

out register_class_count The number of architecture register classes.

out register_classes A pointer to an array of amd_dbgapi_register_class_id_t with
register_class_count elements. It is allocated by the
amd_dbgapi_callbacks_s::allocate_memory callback and is owned by the client.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in register_class_count and
register_classes.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized;
and register_class_count and
register_classes are unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized; and register_class_count and
register_classes are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARCHITECTURE_IDarchitecture_id is invalid.
register_class_count and
register_classes are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT register_class_count or
register_classes are NULL.
register_class_count and
register_classes are unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate register_classes returns NULL.
register_class_count and
register_classes are unaltered.

2.16.4.3 amd_dbgapi_architecture_register_list()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_register_list (

amd_dbgapi_architecture_id_t architecture_id,

size_t ∗ register_count,

amd_dbgapi_register_id_t ∗∗ registers)

Report the list of registers supported by the architecture.

This list is all the registers the architecture can support, but a specific wave may not have all these registers. For
example, AMD GPU architectures can specify the number of vector and scalar registers when a wave is created. Use
the amd_dbgapi_wave_register_list operation to determine the registers supported by a specific wave.

The order of the register handles in the list is stable between calls and registers on the same major class are contiguous
in ascending hardware number order.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.16 Registers 107

Parameters

in architecture←↩

_id
The architecture being queried.

out register_count The number of architecture registers.

out registers A pointer to an array of amd_dbgapi_register_id_t with register_count elements. It
is allocated by the amd_dbgapi_callbacks_s::allocate_memory callback and is owned by
the client.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in register_count and
registers.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized;
and register_count and registers are
unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized; and register_count and
registers are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARCHITECTURE_IDarchitecture_id is invalid. register_count
and registers are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT register_count or registers are NULL.
register_count and registers are unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate registers returns NULL.
register_count and registers are unaltered.

2.16.4.4 amd_dbgapi_dwarf_register_to_register()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_dwarf_register_to_register (

amd_dbgapi_architecture_id_t architecture_id,

uint64_t dwarf_register,

amd_dbgapi_register_id_t ∗ register_id)

Return a register handle from an AMD GPU DWARF register number for an architecture.

The AMD GPU DWARF register number must be valid for the architecture.

See [User Guide for AMDGPU Backend - Code Object - DWARF - Register Identifier] (https://llvm.←↩

org/docs/AMDGPUUsage.html#register-identifier).

Parameters

in architecture←↩

_id
The architecture of the DWARF register.

in dwarf_register The AMD GPU DWARF register number.

out register_id The register handle that corresponds to the DWARF register ID.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

https://llvm.org/docs/AMDGPUUsage.html#register-identifier
https://llvm.org/docs/AMDGPUUsage.html#register-identifier

108 Topic Documentation

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in register_id.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
register_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and register_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARCHITECTURE_IDarchitecture_id is invalid. register_id is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT register_id is NULL. register_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYdwarf_register is not valid for the
architecture_id. register_id is unaltered.

2.16.4.5 amd_dbgapi_prefetch_register()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_prefetch_register (

amd_dbgapi_wave_id_t wave_id,

amd_dbgapi_register_id_t register_id,

amd_dbgapi_size_t register_count)

Prefetch register values.

A hint to indicate that a range of registers may be read using amd_dbgapi_read_register in the future. This can improve
the performance of reading registers as the library may be able to batch the prefetch requests into one request.

The wave must be stopped. The register and wave must both belong to the same architecture, and the wave must have
allocated that register.

If the wave is resumed, then any prefetch requests for registers that were not subsequently read may be discarded and
so provide no performance benefit. Prefetch requests for registers that are never subsequently read may in fact reduce
performance.

The registers to prefetch are specified as the first register and the number of registers. The first register can be
any register supported by the wave. The number of registers is in terms of the wave register order returned by
amd_dbgapi_wave_register_list. If the number exceeds the number of wave registers, then only up to the last wave
register is prefetched.

Parameters

in wave_id The wave being queried for the register.

in register_id The first register being requested.

in register_count The number of registers being requested.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully. Registers
may be prefetched.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.16 Registers 109

Return values

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized.

AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID wave_id is invalid. No registers are prefetched.

AMD_DBGAPI_STATUS_ERROR_INVALID_REGISTER_IDregister_id is invalid. No registers are prefetched.

AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_STOPPEDwave_id is not stopped. No registers are prefetched.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYThe architectures of wave_id and register_id
are not the same. No registers are prefetched.

AMD_DBGAPI_STATUS_ERROR_REGISTER_NOT_AVAILABLEregister_id is not allocated for wave_id. No
registers are prefetched.

2.16.4.6 amd_dbgapi_read_register()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_read_register (

amd_dbgapi_wave_id_t wave_id,

amd_dbgapi_register_id_t register_id,

amd_dbgapi_size_t offset,

amd_dbgapi_size_t value_size,

void ∗ value)

Read a register.

value_size bytes are read from the register starting at offset into value.

The wave must be stopped. The register and wave must both belong to the same architecture, and the wave must have
allocated that register.

The register size can be obtained using amd_dbgapi_register_get_info with the AMD_DBGAPI_REGISTER_INFO_SIZE
query.

Parameters

in wave_id The wave to being queried for the register.

in register←↩

_id
The register being requested.

in offset The first byte to start reading the register. The offset is zero based starting from the least
significant byte of the register.

in value_size The number of bytes to read from the register which must be greater than 0 and less than
the size of the register minus offset.

out value The bytes read from the register. Must point to an array of at least value_size bytes.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and
value is set to value_size bytes starting at
offset from the contents of the register.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

110 Topic Documentation

Return values

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID wave_id is invalid. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_REGISTER_IDregister_id is invalid. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_STOPPEDwave_id is not stopped. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT value is NULL or value_size is 0. value is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYvalue_size is greater than the size of the
register_id minus offset or the architectures of
wave_id and register_id are not the same.
value is unaltered.

AMD_DBGAPI_STATUS_ERROR_REGISTER_NOT_AVAILABLEregister_id is not allocated for wave_id. value
is unaltered.

2.16.4.7 amd_dbgapi_register_get_info()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_register_get_info (

amd_dbgapi_register_id_t register_id,

amd_dbgapi_register_info_t query,

size_t value_size,

void ∗ value)

Query information about a register.

amd_dbgapi_register_info_t specifies the queries supported and the type returned using the value argument.

Parameters

in register←↩

_id
The handle of the register being queried.

in query The query being requested.

in value_size Size of the memory pointed to by value. Must be equal to the byte size of the query result.

out value Pointer to memory where the query result is stored.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in value.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_REGISTER_IDregister_id is invalid for architecture_id.
value is unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.16 Registers 111

Return values

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT value is NULL, or query is invalid or not supported
for an architecture. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYvalue_size does not match the size of the query
result. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE The requested information is not available. See
amd_dbgapi_register_info_t for queries that can
produce this error. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate value returns NULL. value is
unaltered.

2.16.4.8 amd_dbgapi_register_is_in_register_class()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_register_is_in_register_class (

amd_dbgapi_register_class_id_t register_class_id,

amd_dbgapi_register_id_t register_id,

amd_dbgapi_register_class_state_t ∗ register_class_state)

Determine if a register is a member of a register class.

The register and register class must both belong to the same architecture.

Parameters

in register_class_id The handle of the register class being queried.

in register_id The handle of the register being queried.

out register_class_state AMD_DBGAPI_REGISTER_CLASS_STATE_NOT_MEMBER if the register is not
in the register class. AMD_DBGAPI_REGISTER_CLASS_STATE_MEMBER if the
register is in the register class.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in register_class_state.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
register_class_state is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and register_class_state is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_REGISTER_IDregister_id is invalid.
register_class_state is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_REGISTER_CLASS_IDregister_class_id is invalid.
register_class_state is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT register_class_state is NULL.
register_class_state is unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

112 Topic Documentation

Return values

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYThe architectures of register_class_id and
register_id are not the same.
register_class_state is unaltered.

2.16.4.9 amd_dbgapi_wave_register_exists()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_wave_register_exists (

amd_dbgapi_wave_id_t wave_id,

amd_dbgapi_register_id_t register_id,

amd_dbgapi_register_exists_t ∗ exists)

Query if a register exists for a wave.

The register and wave must both belong to the same architecture.

Parameters

in wave_id The wave being queried.

in register←↩

_id
The register being queried.

out exists Indication of whether wave_id has register_id.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in exists.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
exists is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and exists is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID wave_id is invalid. exists is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_REGISTER_IDregister_id is invalid. exists is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT exists is NULL. exists is unaltered.
AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYThe architectures of wave_id and register_id

are not the same. exists is unaltered.

2.16.4.10 amd_dbgapi_wave_register_list()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_wave_register_list (

amd_dbgapi_wave_id_t wave_id,

size_t ∗ register_count,

amd_dbgapi_register_id_t ∗∗ registers)

Report the list of registers supported by a wave.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.16 Registers 113

This list is the registers allocated for a specific wave and may not be all the registers supported by the architecture. For
example, AMD GPU architectures can specify the number of vector and scalar registers when a wave is created. Use
the amd_dbgapi_architecture_register_list operation to determine the full set of registers supported by the architecture.

The order of the register handles in the list is stable between calls. It is equal to, or a subset of, those returned by
amd_dbgapi_architecture_register_list and in the same order.

Parameters

in wave_id The wave being queried.

out register_count The number of wave registers.

out registers A pointer to an array of amd_dbgapi_register_id_t with register_count elements. It
is allocated by the amd_dbgapi_callbacks_s::allocate_memory callback and is owned by
the client.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in register_count and
registers.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized;
and register_count and registers are
unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized; and register_count and
registers are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID wave_id is invalid. register_count and
registers are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT register_count or registers are NULL.
register_count and registers are unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate registers returns NULL.
register_count and registers are unaltered.

2.16.4.11 amd_dbgapi_write_register()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_write_register (

amd_dbgapi_wave_id_t wave_id,

amd_dbgapi_register_id_t register_id,

amd_dbgapi_size_t offset,

amd_dbgapi_size_t value_size,

const void ∗ value)

Write a register.

value_size bytes are written into the register starting at offset.

The wave must be stopped. The register and wave must both belong to the same architecture, and the
wave must have allocated that register. The wave must not have an active displaced stepping buffer (see

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

114 Topic Documentation

amd_dbgapi_displaced_stepping_start) as the program counter and other registers may be changed as part of
creating the displaced stepping buffer.

The register size can be obtained using amd_dbgapi_register_get_info with the AMD_DBGAPI_REGISTER_INFO_SIZE
query.

Parameters

in wave_id The wave to being queried for the register.

in register←↩

_id
The register being requested.

in offset The first byte to start writing the register. The offset is zero based starting from the least
significant byte of the register.

in value_size The number of bytes to write to the register which must be greater than 0 and less than the
size of the register minus offset.

in value The bytes to write to the register. Must point to an array of at least value_size bytes.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and
value_size bytes have been written to the contents
of the register starting at offset.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
the register is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized. The register is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID wave_id is invalid. The register is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_REGISTER_IDregister_id is invalid. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_STOPPEDwave_id is not stopped. The register is unaltered.

AMD_DBGAPI_STATUS_ERROR_DISPLACED_STEPPING_ACTIVEwave_id has an active displaced stepping buffer.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT value is NULL or value_size is 0. value is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYvalue_size is greater than the size of the
register_id minus offset or the architectures of
wave_id and register_id are not the same.
value is unaltered.

AMD_DBGAPI_STATUS_ERROR_REGISTER_NOT_AVAILABLEregister_id is not allocated for wave_id. value
is unaltered.

AMD_DBGAPI_STATUS_ERROR_PROCESS_FROZEN the process the wave belongs to is frozen. value is
unaltered.

2.17 Memory

Operations related to AMD GPU memory access.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.17 Memory 115

Data Structures

• struct amd_dbgapi_address_class_id_t

Opaque source language address class handle.

• struct amd_dbgapi_address_space_id_t

Opaque address space handle.

Macros

• #define AMD_DBGAPI_LANE_NONE ((amd_dbgapi_lane_id_t) (-1))

The NULL lane handle.

• #define AMD_DBGAPI_ADDRESS_CLASS_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_address_class_id_t,
0)

The NULL address class handle.

• #define AMD_DBGAPI_ADDRESS_SPACE_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_address_space_id_t,
0)

The NULL address space handle.

• #define AMD_DBGAPI_ADDRESS_SPACE_GLOBAL AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_address_space_id_t,
1)

The global address space handle.

Typedefs

• typedef uint32_t amd_dbgapi_lane_id_t

A wave lane handle.

• typedef uint64_t amd_dbgapi_segment_address_t

Each address space has its own linear address to access it termed a segment address.

Enumerations

• enum amd_dbgapi_address_class_info_t {
AMD_DBGAPI_ADDRESS_CLASS_INFO_NAME = 1 ,
AMD_DBGAPI_ADDRESS_CLASS_INFO_ADDRESS_SPACE = 2 ,
AMD_DBGAPI_ADDRESS_CLASS_INFO_DWARF = 3 }

Source language address class queries that are supported by amd_dbgapi_address_class_get_info.

• enum amd_dbgapi_address_space_access_t {
AMD_DBGAPI_ADDRESS_SPACE_ACCESS_ALL = 1 ,
AMD_DBGAPI_ADDRESS_SPACE_ACCESS_PROGRAM_CONSTANT = 2 ,
AMD_DBGAPI_ADDRESS_SPACE_ACCESS_DISPATCH_CONSTANT = 3 }

Indication of how the address space is accessed.

• enum amd_dbgapi_address_space_info_t {
AMD_DBGAPI_ADDRESS_SPACE_INFO_NAME = 1 ,
AMD_DBGAPI_ADDRESS_SPACE_INFO_ADDRESS_SIZE = 2 ,
AMD_DBGAPI_ADDRESS_SPACE_INFO_NULL_ADDRESS = 3 ,
AMD_DBGAPI_ADDRESS_SPACE_INFO_ACCESS = 4 ,
AMD_DBGAPI_ADDRESS_SPACE_INFO_DWARF = 5 }

Address space queries that are supported by amd_dbgapi_address_space_get_info.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

116 Topic Documentation

• enum amd_dbgapi_segment_address_dependency_t {
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_NONE = 0 ,
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_LANE = 1 ,
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_WAVE = 2 ,
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_WORKGROUP = 3 ,
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_AGENT = 4 ,
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_PROCESS = 5 }

The dependency when reading or writing a specific segment address of an address space using the amd_dbgapi_read_memory
and amd_dbgapi_write_memory operations.

• enum amd_dbgapi_address_class_state_t {
AMD_DBGAPI_ADDRESS_CLASS_STATE_NOT_MEMBER = 0 ,
AMD_DBGAPI_ADDRESS_CLASS_STATE_MEMBER = 1 }

Indication of whether a segment address in an address space is a member of an source language address class.

• enum amd_dbgapi_memory_precision_t {
AMD_DBGAPI_MEMORY_PRECISION_NONE = 0 ,
AMD_DBGAPI_MEMORY_PRECISION_PRECISE = 1 }

Memory access precision.

• enum amd_dbgapi_alu_exceptions_precision_t {
AMD_DBGAPI_ALU_EXCEPTIONS_PRECISION_NONE = 0 ,
AMD_DBGAPI_ALU_EXCEPTIONS_PRECISION_PRECISE = 1 }

ALU exceptions reporting precision.

Functions

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_address_class_get_info (amd_dbgapi_address_class_id_t
address_class_id, amd_dbgapi_address_class_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_62

Query information about a source language address class of an architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_address_class_list (amd_dbgapi_architecture_id_t
architecture_id, size_t ∗address_class_count, amd_dbgapi_address_class_id_t ∗∗address_classes) AMD_DBGAPI_VERSION_0_54

Report the list of source language address classes supported by the architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_dwarf_address_class_to_address_class (amd_dbgapi_architecture_id_t
architecture_id, uint64_t dwarf_address_class, amd_dbgapi_address_class_id_t ∗address_class_id) AMD_DBGAPI_VERSION_0_54

Return the architecture source language address class from a DWARF address class number for an architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_address_space_get_info (amd_dbgapi_address_space_id_t
address_space_id, amd_dbgapi_address_space_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_62

Query information about an address space.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_address_space_list (amd_dbgapi_architecture_id_t
architecture_id, size_t ∗address_space_count, amd_dbgapi_address_space_id_t ∗∗address_spaces) AMD_DBGAPI_VERSION_0_54

Report the list of address spaces supported by the architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_dwarf_address_space_to_address_space (amd_dbgapi_architecture_id_t
architecture_id, uint64_t dwarf_address_space, amd_dbgapi_address_space_id_t ∗address_space_id)
AMD_DBGAPI_VERSION_0_54

Return the address space from an AMD GPU DWARF address space number for an architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_convert_address_space (amd_dbgapi_wave_id_t wave_id,
amd_dbgapi_lane_id_t lane_id, amd_dbgapi_address_space_id_t source_address_space_id, amd_dbgapi_segment_address_t
source_segment_address, amd_dbgapi_address_space_id_t destination_address_space_id, amd_dbgapi_segment_address_t
∗destination_segment_address, amd_dbgapi_size_t ∗destination_contiguous_bytes) AMD_DBGAPI_VERSION_0_62

Convert a source segment address in the source address space into a destination segment address in the destination
address space.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.17 Memory 117

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_address_dependency (amd_dbgapi_address_space_id_t
address_space_id, amd_dbgapi_segment_address_t segment_address, amd_dbgapi_segment_address_dependency_t
∗segment_address_dependency) AMD_DBGAPI_VERSION_0_64

Determine the dependency of a segment address value in a particular address space.
• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_address_is_in_address_class (amd_dbgapi_wave_id_t

wave_id, amd_dbgapi_lane_id_t lane_id, amd_dbgapi_address_space_id_t address_space_id, amd_dbgapi_segment_address_t
segment_address, amd_dbgapi_address_class_id_t address_class_id, amd_dbgapi_address_class_state_t
∗address_class_state) AMD_DBGAPI_VERSION_0_54

Determine if a segment address in an address space is a member of a source language address class.
• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_read_memory (amd_dbgapi_process_id_t process_id,

amd_dbgapi_wave_id_t wave_id, amd_dbgapi_lane_id_t lane_id, amd_dbgapi_address_space_id_t address←↩

_space_id, amd_dbgapi_segment_address_t segment_address, amd_dbgapi_size_t ∗value_size, void ∗value)
AMD_DBGAPI_VERSION_0_54

Read memory.
• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_write_memory (amd_dbgapi_process_id_t process_id,

amd_dbgapi_wave_id_t wave_id, amd_dbgapi_lane_id_t lane_id, amd_dbgapi_address_space_id_t address←↩

_space_id, amd_dbgapi_segment_address_t segment_address, amd_dbgapi_size_t ∗value_size, const void
∗value) AMD_DBGAPI_VERSION_0_76

Write memory.
• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_set_memory_precision (amd_dbgapi_process_id_t process←↩

_id, amd_dbgapi_memory_precision_t memory_precision) AMD_DBGAPI_VERSION_0_54

Control precision of memory access reporting.
• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_set_alu_exceptions_precision (amd_dbgapi_process_id_t

process_id, amd_dbgapi_alu_exceptions_precision_t alu_exceptions_precision) AMD_DBGAPI_VERSION_0_77

Control precision of ALU exceptions reporting.

2.17.1 Detailed Description

Operations related to AMD GPU memory access.

The AMD GPU supports allocating memory in different address spaces. See [User Guide for AMDGPU Backend - LLVM
- Address Spaces] (https://llvm.org/docs/AMDGPUUsage.html#address-spaces).

2.17.2 Macro Definition Documentation

2.17.2.1 AMD_DBGAPI_ADDRESS_CLASS_NONE

#define AMD_DBGAPI_ADDRESS_CLASS_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_address_class_id_t,

0)

The NULL address class handle.

2.17.2.2 AMD_DBGAPI_ADDRESS_SPACE_GLOBAL

#define AMD_DBGAPI_ADDRESS_SPACE_GLOBAL AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_address_space_id_t,

1)

The global address space handle.

Every architecture supports a global address space that uses the same address space ID.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

https://llvm.org/docs/AMDGPUUsage.html#address-spaces

118 Topic Documentation

2.17.2.3 AMD_DBGAPI_ADDRESS_SPACE_NONE

#define AMD_DBGAPI_ADDRESS_SPACE_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_address_space_id_t,

0)

The NULL address space handle.

2.17.2.4 AMD_DBGAPI_LANE_NONE

#define AMD_DBGAPI_LANE_NONE ((amd_dbgapi_lane_id_t) (-1))

The NULL lane handle.

2.17.3 Typedef Documentation

2.17.3.1 amd_dbgapi_lane_id_t

typedef uint32_t amd_dbgapi_lane_id_t

A wave lane handle.

A wave can have one or more lanes controlled by an execution mask. Vector instructions will be performed for each lane
of the wave that the execution mask has enabled. Vector instructions can access registers that are vector registers. A
vector register has a separate value for each lane, and vector instructions will access the corresponding component for
each lane's evaluation of the instruction.

The number of lanes of a wave can be obtained with the AMD_DBGAPI_WAVE_INFO_LANE_COUNT query. Different
waves of the same architecture can have different lane counts.

The AMD GPU compiler may map source language threads of execution to lanes of a wave. The DWARF debug
information which maps such source languages to the generated architecture specific code must include information
about the lane mapping.

The DW_ASPACE_AMDGPU_private_lane DWARF address space supports memory allocated independently for
each lane of a wave.

Lanes are numbered from 0 to AMD_DBGAPI_WAVE_INFO_LANE_COUNT minus 1.

Only unique for a single wave of a single process.

2.17.3.2 amd_dbgapi_segment_address_t

typedef uint64_t amd_dbgapi_segment_address_t

Each address space has its own linear address to access it termed a segment address.

Different address spaces may have memory locations that alias each other, but the segment address for such memory
locations may be different in each address space. Consequently a segment address is specific to an address space.

Some address spaces may access memory that is allocated independently for each workgroup, for each wave, or for
each lane of of a wave. Consequently a segment address may be specific to a wave or lane of a wave.

See [User Guide for AMDGPU Backend - LLVM - Address Spaces] (https://llvm.org/docs/←↩

AMDGPUUsage.html#address-spaces).

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

https://llvm.org/docs/AMDGPUUsage.html#address-spaces
https://llvm.org/docs/AMDGPUUsage.html#address-spaces

2.17 Memory 119

2.17.4 Enumeration Type Documentation

2.17.4.1 amd_dbgapi_address_class_info_t

enum amd_dbgapi_address_class_info_t

Source language address class queries that are supported by amd_dbgapi_address_class_get_info.

Each query specifies the type of data returned in the value argument to amd_dbgapi_address_class_get_info.

Enumerator

AMD_DBGAPI_ADDRESS_CLASS_INFO_NAME Return the source language address class name. The
type of this attribute is a pointer to a NUL terminated
char. It is allocated by the
amd_dbgapi_callbacks_s::allocate_memory callback
and is owned by the client.

AMD_DBGAPI_ADDRESS_CLASS_INFO_←↩

ADDRESS_SPACE
Return the architecture specific address space that is
used to implement a pointer or reference to the source
language address class. The type of this attribute is
amd_dbgapi_address_class_id_t.
See [User Guide for AMDGPU Backend - Code Object -
DWARF - Address Class Mapping] (
https://llvm.org/docs/AMDGPUUsage.←↩

html#address-class-mapping).

AMD_DBGAPI_ADDRESS_CLASS_INFO_DWARF Return the AMD GPU DWARF address class number
for the address class' architecture. The type of this
attribute is uint64_t.

2.17.4.2 amd_dbgapi_address_class_state_t

enum amd_dbgapi_address_class_state_t

Indication of whether a segment address in an address space is a member of an source language address class.

Enumerator

AMD_DBGAPI_ADDRESS_CLASS_STATE_NOT_←↩

MEMBER
The segment address in the address space is not a
member of the source language address class.

AMD_DBGAPI_ADDRESS_CLASS_STATE_MEMBER The segment address in the address space is a
member of the source language address class.

2.17.4.3 amd_dbgapi_address_space_access_t

enum amd_dbgapi_address_space_access_t

Indication of how the address space is accessed.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

https://llvm.org/docs/AMDGPUUsage.html#address-class-mapping
https://llvm.org/docs/AMDGPUUsage.html#address-class-mapping
https://llvm.org/docs/AMDGPUUsage.html#address-class-mapping

120 Topic Documentation

Enumerator

AMD_DBGAPI_ADDRESS_SPACE_ACCESS_ALL The address space supports all accesses. Values
accessed can change during the lifetime of the program.

AMD_DBGAPI_ADDRESS_SPACE_ACCESS_←↩

PROGRAM_CONSTANT
The address space is read only. Values accessed are
always the same value for the lifetime of the program
execution.

AMD_DBGAPI_ADDRESS_SPACE_ACCESS_←↩

DISPATCH_CONSTANT
The address space is only read the waves of a kernel
dispatch. Values accessed are always the same value
for the lifetime of the dispatch.

2.17.4.4 amd_dbgapi_address_space_info_t

enum amd_dbgapi_address_space_info_t

Address space queries that are supported by amd_dbgapi_address_space_get_info.

Each query specifies the type of data returned in the value argument to amd_dbgapi_address_space_get_info.

Enumerator

AMD_DBGAPI_ADDRESS_SPACE_INFO_NAME Return the address space name. The type of this
attribute is a pointer to a NUL terminated char∗. It is
allocated by the
amd_dbgapi_callbacks_s::allocate_memory callback
and is owned by the client.

AMD_DBGAPI_ADDRESS_SPACE_INFO_←↩

ADDRESS_SIZE
Return the byte size of an address in the address
space. The type of this attribute is amd_dbgapi_size_t.

AMD_DBGAPI_ADDRESS_SPACE_INFO_NULL_←↩

ADDRESS
Return the NULL segment address value in the address
space. The type of this attribute is
amd_dbgapi_segment_address_t.

AMD_DBGAPI_ADDRESS_SPACE_INFO_ACCESS Return the address space access. The type of this
attribute is uint32_t with values defined by
amd_dbgapi_address_space_access_t.

AMD_DBGAPI_ADDRESS_SPACE_INFO_DWARF Return the AMD GPU DWARF address space number
for the address space's architecture. The type of this
attribute is uint64_t.

2.17.4.5 amd_dbgapi_alu_exceptions_precision_t

enum amd_dbgapi_alu_exceptions_precision_t

ALU exceptions reporting precision.

Waves may issue multiple instructions and advance the program counter before a previous ALU instruction has executed
and reported exceptions. This can result in a wave stopping due to an ALU exception beyond the instruction that caused
the wave to stop.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.17 Memory 121

Some architectures allow hardware to be configured to always wait for ALU instructions to complete before issuing to
the next instruction. If an exception is raised by the instruction, the wave will stop at the instruction immediately following
it. Enabling this mode can make execution of waves slower.

The AMD_DBGAPI_PROCESS_INFO_PRECISE_ALU_EXCEPTIONS_SUPPORTED query can be used to determine
if the architectures of all the agents of a process support controlling precise ALU exceptions reporting.

Enumerator

AMD_DBGAPI_ALU_EXCEPTIONS_PRECISION_←↩

NONE
ALU exceptions delivery might be reported at any time
after the instructions causing them have executed.

AMD_DBGAPI_ALU_EXCEPTIONS_PRECISION_←↩

PRECISE
When an ALU exception is delivered to the waves, the
wave's PC is at the instruction following the one causing
the exception to be raised. This can cause waves to
execute slower.

2.17.4.6 amd_dbgapi_memory_precision_t

enum amd_dbgapi_memory_precision_t

Memory access precision.

The AMD GPU can overlap the execution of memory instructions with other instructions. This can result in a wave
stopping due to a memory violation or hardware data watchpoint hit with a program counter beyond the instruction that
caused the wave to stop.

Some architectures allow the hardware to be configured to always wait for memory operations to complete before
continuing. This will result in the wave stopping at the instruction immediately after the one that caused the stop event.
Enabling this mode can make execution of waves significantly slower.

The AMD_DBGAPI_PROCESS_INFO_PRECISE_MEMORY_SUPPORTED query can be used to determine if the ar-
chitectures of all the agents of a process support controlling precise memory accesses.

Enumerator

AMD_DBGAPI_MEMORY_PRECISION_NONE Memory instructions execute normally and a wave does not
wait for the memory access to complete.

AMD_DBGAPI_MEMORY_PRECISION_PRECISE A wave waits for memory instructions to complete before
executing further instructions. This can cause a wave to
execute significantly slower.

2.17.4.7 amd_dbgapi_segment_address_dependency_t

enum amd_dbgapi_segment_address_dependency_t

The dependency when reading or writing a specific segment address of an address space using the amd_dbgapi_read_memory
and amd_dbgapi_write_memory operations.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

122 Topic Documentation

Enumerator

AMD_DBGAPI_SEGMENT_ADDRESS_←↩

DEPENDENCE_NONE
No dependence is available.

AMD_DBGAPI_SEGMENT_ADDRESS_←↩

DEPENDENCE_LANE
Reading or writing the segment address depends on the
lane.

AMD_DBGAPI_SEGMENT_ADDRESS_←↩

DEPENDENCE_WAVE
Reading or writing the segment address depends on the
wavefront.

AMD_DBGAPI_SEGMENT_ADDRESS_←↩

DEPENDENCE_WORKGROUP
Reading or writing the segment address depends on the
workgroup.

AMD_DBGAPI_SEGMENT_ADDRESS_←↩

DEPENDENCE_AGENT
Reading or writing the segment address depends on the
agent.

AMD_DBGAPI_SEGMENT_ADDRESS_←↩

DEPENDENCE_PROCESS
Reading or writing the segment address depends on the
process.

2.17.5 Function Documentation

2.17.5.1 amd_dbgapi_address_class_get_info()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_address_class_get_info (

amd_dbgapi_address_class_id_t address_class_id,

amd_dbgapi_address_class_info_t query,

size_t value_size,

void ∗ value)

Query information about a source language address class of an architecture.

amd_dbgapi_address_class_info_t specifies the queries supported and the type returned using the value argument.

Parameters

in address_class←↩

_id
The handle of the source language address class being queried.

in query The query being requested.

in value_size Size of the memory pointed to by value. Must be equal to the byte size of the query
result.

out value Pointer to memory where the query result is stored.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in value.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_CLASS_IDaddress_class_id is invalid. value is unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.17 Memory 123

Return values

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT value is NULL or query is invalid. value is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYvalue_size does not match the size of the query
result. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate value returns NULL. value is
unaltered.

2.17.5.2 amd_dbgapi_address_dependency()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_address_dependency (

amd_dbgapi_address_space_id_t address_space_id,

amd_dbgapi_segment_address_t segment_address,

amd_dbgapi_segment_address_dependency_t ∗ segment_address_dependency)

Determine the dependency of a segment address value in a particular address space.

This indicates which arguments amd_dbgapi_read_memory and amd_dbgapi_write_memory require when reading and
writing memory when given a specific segment address in an address space.

Parameters

in address_space_id The address space of the segment_address.

in segment_address The integral value of the segment address. Only the bits corresponding
to the address size for the address_space_id requested are used.
The address size is provided by the
AMD_DBGAPI_ADDRESS_SPACE_INFO_ADDRESS_SIZE query.

out segment_address_dependency The dependency of the segment_address value in
address_space_id. Will be a value of
amd_dbgapi_segment_address_dependency_t other than
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_NONE.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in
segment_address_dependencies.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
segment_address_dependencies is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and
destination_segment_address and
segment_address_dependencies is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_SPACE_IDaddress_space_id is invalid.
segment_address_dependencies is unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

124 Topic Documentation

Return values

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT segment_address_dependencies is NULL.
segment_address_dependencies is unaltered.

2.17.5.3 amd_dbgapi_address_is_in_address_class()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_address_is_in_address_class (

amd_dbgapi_wave_id_t wave_id,

amd_dbgapi_lane_id_t lane_id,

amd_dbgapi_address_space_id_t address_space_id,

amd_dbgapi_segment_address_t segment_address,

amd_dbgapi_address_class_id_t address_class_id,

amd_dbgapi_address_class_state_t ∗ address_class_state)

Determine if a segment address in an address space is a member of a source language address class.

The address space and source language address class must both belong to the same architecture.

The address space, source language address class, and wave must all belong to the same architecture.

Parameters

in wave_id The wave that is using the address. If the address_space is
AMD_DBGAPI_ADDRESS_SPACE_GLOBAL then wave_id may be
AMD_DBGAPI_WAVE_NONE, as the address space does not depend on the
active wave, in which case process_id is used.

in lane_id The lane of the wave_id that is using the address. If the address_space
does not depend on the active lane then this may be
AMD_DBGAPI_LANE_NONE. For example, the
AMD_DBGAPI_ADDRESS_SPACE_GLOBAL address space does not depend on
the lane.

in address_space_id The address space of the segment_address. If the address space is
dependent on: the active lane then the lane_id with in the wave_id is used;
the active workgroup then the workgroup of wave_id is used; or the active wave
then the wave_id is used.

in segment_address The integral value of the segment address. Only the bits corresponding to the
address size for the address_space requested are used. The address size is
provided by the AMD_DBGAPI_ADDRESS_SPACE_INFO_ADDRESS_SIZE
query.

in address_class_id The handle of the source language address class.

out address_class_state AMD_DBGAPI_ADDRESS_CLASS_STATE_NOT_MEMBER if the address is not
in the address class. AMD_DBGAPI_ADDRESS_CLASS_STATE_MEMBER if the
address is in the address class.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in address_class_state.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.17 Memory 125

Return values

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
address_class_state is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and address_class_state is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID wave_id is invalid, or wave_id is
AMD_DBGAPI_WAVE_NONE and address_space
is not AMD_DBGAPI_ADDRESS_SPACE_GLOBAL.
address_class_state is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_LANE_ID wave_id is AMD_DBGAPI_WAVE_NONE and
lane_id is not AMD_DBGAPI_LANE_NONE.
wave_id is not AMD_DBGAPI_WAVE_NONE and
lane_id is not AMD_DBGAPI_LANE_NONE and is
not valid for wave_id. lane_id is
AMD_DBGAPI_LANE_NONE and
address_space_id depends on the active lane.
address_class_state is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_SPACE_IDaddress_space_id is invalid.
address_class_state is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_CLASS_IDaddress_class_id is invalid.
address_class_state is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT address_class_state is NULL.
address_class_state is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYThe architectures of wave_id,
address_space_id, and address_class_id
are not the same. address_class_state is
unaltered.

2.17.5.4 amd_dbgapi_address_space_get_info()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_address_space_get_info (

amd_dbgapi_address_space_id_t address_space_id,

amd_dbgapi_address_space_info_t query,

size_t value_size,

void ∗ value)

Query information about an address space.

amd_dbgapi_address_space_info_t specifies the queries supported and the type returned using the value argument.

Parameters

in address_space←↩

_id
The address space.

in query The query being requested.

in value_size Size of the memory pointed to by value. Must be equal to the byte size of the
query result.

out value Pointer to memory where the query result is stored.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

126 Topic Documentation

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in value.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_SPACE_IDaddress_space_id is invalid. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT query is invalid or value is NULL. value is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYvalue_size does not match the size of the query
result. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate value returns NULL. value is
unaltered.

2.17.5.5 amd_dbgapi_architecture_address_class_list()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_address_class_list (

amd_dbgapi_architecture_id_t architecture_id,

size_t ∗ address_class_count,

amd_dbgapi_address_class_id_t ∗∗ address_classes)

Report the list of source language address classes supported by the architecture.

The order of the source language address class handles in the list is stable between calls.

Parameters

in architecture_id The architecture being queried.

out address_class_count The number of architecture source language address classes.

out address_classes A pointer to an array of amd_dbgapi_address_class_id_t with
address_class_count elements. It is allocated by the
amd_dbgapi_callbacks_s::allocate_memory callback and is owned by the client.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in address_class_count and
address_classes.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized;
and address_class_count and
address_classes are unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized; and address_class_count and
address_classes are unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.17 Memory 127

Return values

AMD_DBGAPI_STATUS_ERROR_INVALID_ARCHITECTURE_IDarchitecture_id is invalid.
address_class_count and
address_classes are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT address_class_count or address_classes
are NULL. address_class_count and
address_classes are unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate address_classes returns NULL.
address_class_count and
address_classes are unaltered.

2.17.5.6 amd_dbgapi_architecture_address_space_list()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_address_space_list (

amd_dbgapi_architecture_id_t architecture_id,

size_t ∗ address_space_count,

amd_dbgapi_address_space_id_t ∗∗ address_spaces)

Report the list of address spaces supported by the architecture.

The order of the address space handles in the list is stable between calls.

Parameters

in architecture_id The architecture being queried.

out address_space_count The number of architecture address spaces.

out address_spaces A pointer to an array of amd_dbgapi_address_space_id_t with
address_space_count elements. It is allocated by the
amd_dbgapi_callbacks_s::allocate_memory callback and is owned by the client.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in address_space_count and
address_spaces.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized;
and address_space_count and
address_spaces are unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized; and address_space_count and
address_spaces are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARCHITECTURE_IDarchitecture_id is invalid.
address_space_count and address_spaces
are unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

128 Topic Documentation

Return values

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT address_space_count and address_spaces
are NULL. address_space_count and
address_spaces are unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate address_spaces returns NULL.
address_space_count and address_spaces
are unaltered.

2.17.5.7 amd_dbgapi_convert_address_space()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_convert_address_space (

amd_dbgapi_wave_id_t wave_id,

amd_dbgapi_lane_id_t lane_id,

amd_dbgapi_address_space_id_t source_address_space_id,

amd_dbgapi_segment_address_t source_segment_address,

amd_dbgapi_address_space_id_t destination_address_space_id,

amd_dbgapi_segment_address_t ∗ destination_segment_address,

amd_dbgapi_size_t ∗ destination_contiguous_bytes)

Convert a source segment address in the source address space into a destination segment address in the destination
address space.

If the source segment address is the NULL value in the source address space then it is converted to the NULL value in
the destination address space. The NULL address is provided by the AMD_DBGAPI_ADDRESS_SPACE_INFO_NULL_ADDRESS
query.

An error is returned if the source segment address has no corresponding segment address in the destination address
space.

The source and destination address spaces do not have to have the same linear ordering. For example, for AMD
GPU the private_swizzled address space is implemented as global address space memory that interleaves
the dwords of the wave's lanes. So converting a private_swizzled address to a global address will result in
the corresponding scratch backing memory address. The destination_contiguous_bytes will indicate how
many bytes, starting at the destination_segment_address, before the scratch backing memory corresponds
to a dword of the adjacent lane. To get the scratch backing memory address of the byte after destination←↩

_contiguous_bytes bytes requires amd_dbgapi_convert_address_space to be called again with the address
source_segment_address plus destination_contiguous_bytes.

A client can use this operation to help manage caching the bytes of different address spaces. An address in an address
space that is being accessed can attempt to be converted to the various address spaces being cached to see if it aliases
with bytes being cached under a different address space. For example, an address in the AMD GPU generic address
space may alias with an address in the global, private_swizzled, or local address spaces.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.17 Memory 129

Parameters

in wave_id The wave that is using the address. If the address_space is
AMD_DBGAPI_ADDRESS_SPACE_GLOBAL then wave_id may be
AMD_DBGAPI_WAVE_NONE, as the address space does not depend
on the active wave, in which case process_id is used.

in lane_id The lane of the wave_id that is using the address. If the
address_space does not depend on the active lane then this may be
AMD_DBGAPI_LANE_NONE. For example, the
AMD_DBGAPI_ADDRESS_SPACE_GLOBAL address space does not
depend on the lane.

in source_address_space_id The address space of the source_segment_address.

in source_segment_address The integral value of the source segment address. Only the bits
corresponding to the address size for the
source_address_space_id requested are used. The address
size is provided by the
AMD_DBGAPI_ADDRESS_SPACE_INFO_ADDRESS_SIZE query.

in destination_address_space←↩

_id
The address space to which to convert source_segment_address
that is in source_address_space_id.

out destination_segment_address The integral value of the segment address in
destination_address_space_id that corresponds to
source_segment_address in source_address_space_id.
The bits corresponding to the address size for the
destination_address_space_id are updated, and any
remaining bits are set to zero. The address size is provided by the
AMD_DBGAPI_ADDRESS_SPACE_INFO_ADDRESS_SIZE query.

out destination_contiguous_bytes The number of contiguous bytes for which the converted
destination_segment_address continues to correspond to the
source_segment_address.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in
destination_segment_address and
destination_contiguous_bytes.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
destination_segment_address and
destination_contiguous_bytes are
unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and
destination_segment_address and
destination_contiguous_bytes are
unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

130 Topic Documentation

Return values

AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID wave_id is invalid, or wave_id is
AMD_DBGAPI_WAVE_NONE and
source_address_space_id or
destination_address_space_id depends on
the active wave.
destination_segment_address and
destination_contiguous_bytes are
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_LANE_ID wave_id is AMD_DBGAPI_WAVE_NONE and
lane_id is not AMD_DBGAPI_LANE_NONE.
wave_id is not AMD_DBGAPI_WAVE_NONE and
lane_id is not AMD_DBGAPI_LANE_NONE and is
not valid for wave_id. lane_id is
AMD_DBGAPI_LANE_NONE and
source_address_space_id or
destination_address_space_id depends on
the active lane.
destination_segment_address and
destination_contiguous_bytes are
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_SPACE_IDsource_address_space_id or
destination_address_space_id are invalid.
destination_segment_address and
destination_contiguous_bytes are
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_SPACE_CONVERSIONThe source_segment_address in the
source_address_space_id is not an address
that can be represented in the
destination_address_space_id.
destination_segment_address and
destination_contiguous_bytes are
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT destination_segment_address or
destination_contiguous_bytes are NULL.
destination_segment_address and
destination_contiguous_bytes are
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYsource_address_space_id or
destination_address_space_id address
spaces are not supported by the architecture of
wave_id (if not AMD_DBGAPI_WAVE_NONE).
destination_segment_address and
destination_contiguous_bytes are
unaltered.

2.17.5.8 amd_dbgapi_dwarf_address_class_to_address_class()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_dwarf_address_class_to_address_class (

amd_dbgapi_architecture_id_t architecture_id,

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.17 Memory 131

uint64_t dwarf_address_class,

amd_dbgapi_address_class_id_t ∗ address_class_id)

Return the architecture source language address class from a DWARF address class number for an architecture.

The AMD GPU DWARF address class number must be valid for the architecture.

See [User Guide for AMDGPU Backend - Code Object - DWARF - Address Class Mapping] (https://llvm.←↩

org/docs/AMDGPUUsage.html#address-class-mapping).

Parameters

in architecture_id The architecture of the source language address class.

in dwarf_address_class The DWARF source language address class.

out address_class_id The source language address class that corresponds to the DWARF address
class for the architecture.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in address_class_id.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
address_class_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and address_class_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARCHITECTURE_IDarchitecture_id is invalid.
address_class_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT address_class_id is NULL.
address_class_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYdwarf_address_class is not valid for the
architecture_id. address_class_id is
unaltered.

2.17.5.9 amd_dbgapi_dwarf_address_space_to_address_space()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_dwarf_address_space_to_address_space (

amd_dbgapi_architecture_id_t architecture_id,

uint64_t dwarf_address_space,

amd_dbgapi_address_space_id_t ∗ address_space_id)

Return the address space from an AMD GPU DWARF address space number for an architecture.

A DWARF address space describes the architecture specific address spaces. It is used in DWARF location expressions
that calculate addresses. See [User Guide for AMDGPU Backend - Code Object - DWARF - Address Space Mapping] (
https://llvm.org/docs/AMDGPUUsage.html#address-space-mapping).

The AMD GPU DWARF address space number must be valid for the architecture.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

https://llvm.org/docs/AMDGPUUsage.html#address-class-mapping
https://llvm.org/docs/AMDGPUUsage.html#address-class-mapping
https://llvm.org/docs/AMDGPUUsage.html#address-space-mapping
https://llvm.org/docs/AMDGPUUsage.html#address-space-mapping

132 Topic Documentation

Parameters

in architecture_id The architecture of the address space.

in dwarf_address_space The AMD GPU DWARF address space.

out address_space_id The address space that corresponds to the DWARF address space for the
architecture architecture_id.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in address_space_id.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
address_space_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and address_space_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARCHITECTURE_IDarchitecture_id is invalid.
address_space_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT address_space_id is NULL.
address_space_id is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYdwarf_address_space is not valid for
architecture_id. address_class_id is
unaltered.

2.17.5.10 amd_dbgapi_read_memory()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_read_memory (

amd_dbgapi_process_id_t process_id,

amd_dbgapi_wave_id_t wave_id,

amd_dbgapi_lane_id_t lane_id,

amd_dbgapi_address_space_id_t address_space_id,

amd_dbgapi_segment_address_t segment_address,

amd_dbgapi_size_t ∗ value_size,

void ∗ value)

Read memory.

The memory bytes in address_space are read for lane_id of wave_id starting at segment_address se-
quentially into value until value_size bytes have been read or an invalid memory address is reached. value_←↩

size is set to the number of bytes read successfully.

If wave_id is not AMD_DBGAPI_WAVE_NONE then it must be stopped, must belong to process_id, and its
architecture must be the same as that of the address space.

The library performs all necessary hardware cache management so that the memory values read are coherent with the
wave_id if not AMD_DBGAPI_WAVE_NONE. In order for the memory values read to be coherent with other waves,
the waves must be stopped when invoking this operation. Stopping wave creation, stopping all waves, performing
this operation, resuming any stopped waves, and then allowing wave creation can achieve this requirement. This
requirement also applies if memory is read by other operating system supported means.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.17 Memory 133

Parameters

in process_id The process to read memory from if wave_id is AMD_DBGAPI_WAVE_NONE
the address_space is AMD_DBGAPI_ADDRESS_SPACE_GLOBAL.

in wave_id The wave that is accessing the memory. If the address_space is
AMD_DBGAPI_ADDRESS_SPACE_GLOBAL then wave_id may be
AMD_DBGAPI_WAVE_NONE, as the address space does not depend on the
active wave, in which case process_id is used.

in lane_id The lane of wave_id that is accessing the memory. If the address_space
does not depend on the active lane then this may be
AMD_DBGAPI_LANE_NONE. For example, the
AMD_DBGAPI_ADDRESS_SPACE_GLOBAL address space does not depend
on the lane.

in address_space←↩

_id
The address space of the segment_address. If the address space is
dependent on: the active lane then the lane_id with in the wave_id is used;
the active workgroup then the workgroup of wave_id is used; or the active
wave then the wave_id is used.

in segment_address The integral value of the segment address. Only the bits corresponding to the
address size for the address_space requested are used. The address size
is provided by the AMD_DBGAPI_ADDRESS_SPACE_INFO_ADDRESS_SIZE
query.

in,out value_size Pass in the number of bytes to read from memory. Return the number of bytes
successfully read from memory.

out value Pointer to memory where the result is stored. Must be an array of at least input
value_size bytes.

Return values

AMD_DBGAPI_STATUS_SUCCESS Either the input value_size was 0, or the input
value_size was greater than 0 and one or more
bytes have been read successfully. The output
value_size is set to the number of bytes
successfully read, which will be 0 if the input
value_size was 0. The first output value_size
bytes of value are set to the bytes successfully read,
all other bytes in value are unaltered.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized;
and value_size and value are unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized; and value_size and value are
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_IDprocess_id is invalid. value_size and value
are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID wave_id is invalid, or wave_id is
AMD_DBGAPI_WAVE_NONE and address_space
is not AMD_DBGAPI_ADDRESS_SPACE_GLOBAL.
value_size and value are unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

134 Topic Documentation

Return values

AMD_DBGAPI_STATUS_ERROR_INVALID_LANE_ID wave_id is AMD_DBGAPI_WAVE_NONE and
lane_id is not AMD_DBGAPI_LANE_NONE.
wave_id is not AMD_DBGAPI_WAVE_NONE and
lane_id is not AMD_DBGAPI_LANE_NONE and is
not valid for wave_id. lane_id is
AMD_DBGAPI_LANE_NONE and
address_space_id depends on the active lane.
value_size and value are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_SPACE_IDaddress_space_id is invalid. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_STOPPEDwave_id is not stopped. value_size and value
are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT value or value_size are NULL. value_size
and value are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYwave_id in not AMD_DBGAPI_WAVE_NONE and
does not belong to process_id or have the same the
architecture as address_space_id. value_size
and value are unaltered.

AMD_DBGAPI_STATUS_ERROR_MEMORY_ACCESS The input value_size was greater than 0 and no
bytes were successfully read. The output
value_size is set to 0. value is unaltered.

2.17.5.11 amd_dbgapi_set_alu_exceptions_precision()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_set_alu_exceptions_precision (

amd_dbgapi_process_id_t process_id,

amd_dbgapi_alu_exceptions_precision_t alu_exceptions_precision)

Control precision of ALU exceptions reporting.

A process can set AMD_DBGAPI_ALU_EXCEPTIONS_PRECISION_NONE to disable precise ALU exception report-
ing. Use the AMD_DBGAPI_PROCESS_INFO_PRECISE_ALU_EXCEPTIONS_SUPPORTED query to determine if
the architecture of all agents of the process support another ALU precision mode.

The ALU exceptions precision is set independently for each process, and only affects the waves executing on the
agents of that process. The setting may be changed at any time, including when waves are executing, and takes effect
immediately.

Parameters

in process_id The process being configured.

in alu_exceptions_precision The ALU exception precision mode to set.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
agents of the process have been configured.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.17 Memory 135

Return values

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and no configuration is changed.

AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_IDprocess_id is invalid. No configuration is changed.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT alu_exceptions_precision is an invalid value.
No configuration is changed.

AMD_DBGAPI_STATUS_ERROR_NOT_SUPPORTED The requested alu_exceptions_precision is
not supported by the architecture of all the agents of
process_id. No configuration is changed.

2.17.5.12 amd_dbgapi_set_memory_precision()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_set_memory_precision (

amd_dbgapi_process_id_t process_id,

amd_dbgapi_memory_precision_t memory_precision)

Control precision of memory access reporting.

A process can be set to AMD_DBGAPI_MEMORY_PRECISION_NONE to disable precise memory reporting. Use the
AMD_DBGAPI_PROCESS_INFO_PRECISE_MEMORY_SUPPORTED query to determine if the architectures of all the
agents of a process support another memory precision.

The memory precision is set independently for each process, and only affects the waves executing on the agents of that
process. The setting may be changed at any time, including when waves are executing, and takes effect immediately.

Parameters

in process_id The process being configured.

in memory_precision The memory precision to set.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
agents of the process have been configured.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and no configuration is changed.

AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_IDprocess_id is invalid. No configuration is changed.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT memory_precision is an invalid value. No
configuration is changed.

AMD_DBGAPI_STATUS_ERROR_NOT_SUPPORTED The requested memory_precision is not supported
by the architecture of all the agents of process_id.
No configuration is changed.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

136 Topic Documentation

2.17.5.13 amd_dbgapi_write_memory()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_write_memory (

amd_dbgapi_process_id_t process_id,

amd_dbgapi_wave_id_t wave_id,

amd_dbgapi_lane_id_t lane_id,

amd_dbgapi_address_space_id_t address_space_id,

amd_dbgapi_segment_address_t segment_address,

amd_dbgapi_size_t ∗ value_size,

const void ∗ value)

Write memory.

The memory bytes in address_space are written for lane_id of wave_id starting at segment_address se-
quentially from value until value_size bytes have been written or an invalid memory address is reached. value←↩

_size is set to the number of bytes written successfully.

If wave_id is not AMD_DBGAPI_WAVE_NONE then it must be stopped, must belong to process_id, and its
architecture must be the same as that of the address space.

The library performs all necessary hardware cache management so that the memory values written are coherent with the
wave_id if not AMD_DBGAPI_WAVE_NONE. In order for the memory values written to be coherent with other waves,
the waves must be stopped when invoking this operation. Stopping wave creation, stopping all waves, performing
this operation, resuming any stopped waves, and then allowing wave creation can achieve this requirement. This
requirement also applies if memory is written by other operating system supported means.

Parameters

in process_id The process to write memory to if wave_id is AMD_DBGAPI_WAVE_NONE
the address_space is AMD_DBGAPI_ADDRESS_SPACE_GLOBAL.

in wave_id The wave that is accessing the memory. If the address_space is
AMD_DBGAPI_ADDRESS_SPACE_GLOBAL then wave_id may be
AMD_DBGAPI_WAVE_NONE, as the address space does not depend on the
active wave, in which case process_id is used.

in lane_id The lane of wave_id that is accessing the memory. If the address_space
does not depend on the active lane then this may be
AMD_DBGAPI_LANE_NONE. For example, the
AMD_DBGAPI_ADDRESS_SPACE_GLOBAL address space does not depend
on the lane.

in address_space←↩

_id
The address space of the segment_address. If the address space is
dependent on: the active lane then the lane_id with in the wave_id is used;
the active workgroup then the workgroup of wave_id is used; or the active
wave then the wave_id is used.

in segment_address The integral value of the segment address. Only the bits corresponding to the
address size for the address_space requested are used. The address size
is provided by the AMD_DBGAPI_ADDRESS_SPACE_INFO_ADDRESS_SIZE
query.

in,out value_size Pass in the number of bytes to write to memory. Return the number of bytes
successfully written to memory.

in value The bytes to write to memory. Must point to an array of at least input
value_size bytes.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.18 Events 137

Return values

AMD_DBGAPI_STATUS_SUCCESS Either the input value_size was 0, or the input
value_size was greater than 0 and one or more
bytes have been written successfully. The output
value_size is set to the number of bytes
successfully written, which will be 0 if the input
value_size was 0. The first output value_size
bytes of memory starting at segment_address are
updated, all other memory is unaltered.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized;
and the memory and value_size are unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized; the memory and value_size are
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_IDprocess_id is invalid. The memory and
value_size are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID wave_id is invalid, or wave_id is
AMD_DBGAPI_WAVE_NONE and address_space
is AMD_DBGAPI_ADDRESS_SPACE_GLOBAL. The
memory and value_size are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_LANE_ID wave_id is AMD_DBGAPI_WAVE_NONE and
lane_id is not AMD_DBGAPI_LANE_NONE.
wave_id is not AMD_DBGAPI_WAVE_NONE and
lane_id is not AMD_DBGAPI_LANE_NONE and is
not valid for wave_id. lane_id is
AMD_DBGAPI_LANE_NONE and
address_space_id depends on the active lane.
The memory and value_size are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_SPACE_IDaddress_space_id is invalid. The memory and
value_size are unaltered.

AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_STOPPEDwave_id is not stopped. The memory and
value_size are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT value or value_size are NULL. The memory and
value_size are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYwave_id in not AMD_DBGAPI_WAVE_NONE and
does not belong to process_id or have the same the
architecture as address_space_id. The memory
and value_size are unaltered.

AMD_DBGAPI_STATUS_ERROR_MEMORY_ACCESS The input value_size was greater than 0 and no
bytes were successfully written. The output
value_size is set to 0. The memory and
value_size are unaltered.

AMD_DBGAPI_STATUS_ERROR_PROCESS_FROZEN This operation is not permitted because the process is
frozen. The memory and value_size are unaltered.

2.18 Events

Asynchronous event management.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

138 Topic Documentation

Data Structures

• struct amd_dbgapi_event_id_t

Opaque event handle.

Macros

• #define AMD_DBGAPI_EVENT_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_event_id_t, 0)

The NULL event handle.

Enumerations

• enum amd_dbgapi_event_kind_t {
AMD_DBGAPI_EVENT_KIND_NONE = 0 ,
AMD_DBGAPI_EVENT_KIND_WAVE_STOP = 1 ,
AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED = 2 ,
AMD_DBGAPI_EVENT_KIND_CODE_OBJECT_LIST_UPDATED = 3 ,
AMD_DBGAPI_EVENT_KIND_BREAKPOINT_RESUME = 4 ,
AMD_DBGAPI_EVENT_KIND_RUNTIME = 5 ,
AMD_DBGAPI_EVENT_KIND_QUEUE_ERROR = 6 }

The event kinds.

• enum amd_dbgapi_runtime_state_t {
AMD_DBGAPI_RUNTIME_STATE_LOADED_SUCCESS = 1 ,
AMD_DBGAPI_RUNTIME_STATE_UNLOADED = 2 ,
AMD_DBGAPI_RUNTIME_STATE_LOADED_ERROR_RESTRICTION = 3 }

Inferior's runtime state.

• enum amd_dbgapi_event_info_t {
AMD_DBGAPI_EVENT_INFO_PROCESS = 1 ,
AMD_DBGAPI_EVENT_INFO_KIND = 2 ,
AMD_DBGAPI_EVENT_INFO_WAVE = 3 ,
AMD_DBGAPI_EVENT_INFO_BREAKPOINT = 4 ,
AMD_DBGAPI_EVENT_INFO_CLIENT_THREAD = 5 ,
AMD_DBGAPI_EVENT_INFO_RUNTIME_STATE = 6 ,
AMD_DBGAPI_EVENT_INFO_QUEUE = 7 }

Event queries that are supported by amd_dbgapi_event_get_info.

Functions

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_next_pending_event (amd_dbgapi_process_id_t
process_id, amd_dbgapi_event_id_t ∗event_id, amd_dbgapi_event_kind_t ∗kind) AMD_DBGAPI_VERSION_0_54

Obtain the next pending event.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_event_get_info (amd_dbgapi_event_id_t event_id, amd_dbgapi_event_info_t
query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_54

Query information about an event.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_event_processed (amd_dbgapi_event_id_t event_id)
AMD_DBGAPI_VERSION_0_54

Report that an event has been processed.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.18 Events 139

2.18.1 Detailed Description

Asynchronous event management.

Events can occur asynchronously. The library maintains a list of pending events that have happened but not yet been
reported to the client. Events are maintained independently for each process.

When amd_dbgapi_process_attach successfully attaches to a process a amd_dbgapi_notifier_t notifier is created that
is available using the AMD_DBGAPI_PROCESS_INFO_NOTIFIER query. When this indicates there may be pending
events for the process, amd_dbgapi_process_next_pending_event can be used to retrieve the pending events.

The notifier must be reset before retrieving pending events so that the notifier will always conservatively indi-
cate there may be pending events. After the client has processed an event it must report completion using
amd_dbgapi_event_processed.

See also

amd_dbgapi_notifier_t

2.18.2 Macro Definition Documentation

2.18.2.1 AMD_DBGAPI_EVENT_NONE

#define AMD_DBGAPI_EVENT_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_event_id_t, 0)

The NULL event handle.

2.18.3 Enumeration Type Documentation

2.18.3.1 amd_dbgapi_event_info_t

enum amd_dbgapi_event_info_t

Event queries that are supported by amd_dbgapi_event_get_info.

Each query specifies the type of data returned in the value argument to amd_dbgapi_event_get_info.

Enumerator

AMD_DBGAPI_EVENT_INFO_PROCESS Return the process to which this event belongs. The type of
this attribute is amd_dbgapi_process_id_t.

AMD_DBGAPI_EVENT_INFO_KIND Return the event kind. The type of this attribute is
amd_dbgapi_event_kind_t.

AMD_DBGAPI_EVENT_INFO_WAVE Return the wave of a
AMD_DBGAPI_EVENT_KIND_WAVE_STOP or
AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED
event. The type of this attribute is a amd_dbgapi_wave_id_t.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

140 Topic Documentation

Enumerator

AMD_DBGAPI_EVENT_INFO_BREAKPOINT Return the breakpoint of a
AMD_DBGAPI_EVENT_KIND_BREAKPOINT_RESUME
event. The type of this attribute is a
amd_dbgapi_breakpoint_id_t.

AMD_DBGAPI_EVENT_INFO_CLIENT_THREAD Return the client thread of a
AMD_DBGAPI_EVENT_KIND_BREAKPOINT_RESUME
event. The type of this attribute is a
amd_dbgapi_client_thread_id_t.

AMD_DBGAPI_EVENT_INFO_RUNTIME_STATE Return if the runtime loaded in the inferior is supported by the
library for a AMD_DBGAPI_EVENT_KIND_RUNTIME event.
The type of this attribute is uint32_t with a value defined
by amd_dbgapi_runtime_state_t.

AMD_DBGAPI_EVENT_INFO_QUEUE Return the queue of a
AMD_DBGAPI_EVENT_KIND_QUEUE_ERROR event. The
type of this attribute is a amd_dbgapi_queue_id_t.

2.18.3.2 amd_dbgapi_event_kind_t

enum amd_dbgapi_event_kind_t

The event kinds.

Enumerator

AMD_DBGAPI_EVENT_KIND_NONE No event.
AMD_DBGAPI_EVENT_KIND_WAVE_STOP A wave has stopped.

AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_←↩

TERMINATED
A command for a wave was not able to complete
because the wave has terminated. Commands that can
result in this event are amd_dbgapi_wave_stop and
amd_dbgapi_wave_resume in single step mode. Since
the wave terminated before stopping, this event will be
reported instead of
AMD_DBGAPI_EVENT_KIND_WAVE_STOP.
The wave that terminated is available by the
AMD_DBGAPI_EVENT_INFO_WAVE query. However,
the wave will be invalid since it has already terminated.
It is the client's responsibility to know what command
was being performed and was unable to complete due
to the wave terminating.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.18 Events 141

Enumerator

AMD_DBGAPI_EVENT_KIND_CODE_OBJECT_←↩

LIST_UPDATED
The list of code objects has changed. This event is only
reported when a thread is in the process of loading or
unloading a code object. It is not reported when
attaching to a process even if there are loaded code
objects. It is the client's responsibility to fetch the
current code object list using
amd_dbgapi_process_code_object_list.
The thread that caused the code object list to change
will be stopped until the event is reported as processed.
Before reporting the event has been processed, the
client must set any pending breakpoints for newly
loaded code objects so that breakpoints will be set
before any code in the code object is executed.
When the event is reported as complete, a
AMD_DBGAPI_EVENT_KIND_BREAKPOINT_RESUME
event may be created which must be processed to
resume the thread that caused the code object list to
change. Leaving the thread stopped may prevent the
inferior's runtime from servicing requests from other
threads.

AMD_DBGAPI_EVENT_KIND_BREAKPOINT_←↩

RESUME
Request to resume a host breakpoint. If
amd_dbgapi_report_breakpoint_hit returns with
resume as false then it indicates that events must be
processed before the thread hitting the breakpoint can
be resumed. When the necessary event(s) are reported
as processed, this event will be added to the pending
events. The breakpoint and client thread can then be
queried by amd_dbgapi_event_get_info using
AMD_DBGAPI_EVENT_INFO_BREAKPOINT and
AMD_DBGAPI_EVENT_INFO_CLIENT_THREAD
respectively. The client must then resume execution of
the thread.

AMD_DBGAPI_EVENT_KIND_RUNTIME The runtime support in the inferior is enabled or
disabled. The client can use this event to determine
when to activate and deactivate AMD GPU debugging
functionality. The status of the inferior's runtime support
can be queried by amd_dbgapi_event_get_info using
AMD_DBGAPI_EVENT_INFO_RUNTIME_STATE. If
not enabled
(AMD_DBGAPI_RUNTIME_STATE_UNLOADED), or
enabled but not compatible
(AMD_DBGAPI_RUNTIME_STATE_LOADED_ERROR_RESTRICTION),
then no code objects, queues, or waves will be reported
to exist, and the only event that will be reported is
AMD_DBGAPI_EVENT_KIND_RUNTIME. If enabled
successfully
(AMD_DBGAPI_RUNTIME_STATE_LOADED_SUCCESS)
full debugging is supported by the library.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

142 Topic Documentation

Enumerator

AMD_DBGAPI_EVENT_KIND_QUEUE_ERROR The inferior's runtime has put a queue into the queue
error state due to exceptions being reported for the
queue. No further waves will be started on the queue.
All waves that belong to the queue are inhibited from
executing further instructions regardless of whether they
are in the halt state. See
AMD_DBGAPI_QUEUE_STATE_ERROR.
The AMD_DBGAPI_QUEUE_INFO_ERROR_REASON
query will include the union of the exceptions that were
reported. Some waves may be stopped before they
were able to report a queue error condition. The wave
stop reason will only include the exceptions that were
reported. For example, if many waves encounter a
memory violation at the same time, only some of the
waves may report it before execution of all the waves in
the queue is inhibited. Only the waves that were able to
report the memory violation before all the waves were
stopped will include the
AMD_DBGAPI_WAVE_STOP_REASON_MEMORY_VIOLATION
stop reason.
Any waves that have a pending single step will report a
AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED
event to indicate that the single step has been
cancelled. Waves in such queues are inhibited from
executing any further instructions. The application can
delete the queue, which will result in all the waves to
also be deleted, and then create a new queue.
The inferior's runtime will not notify the application of the
queue error until this event is reported as complete by
calling amd_dbgapi_event_processed. Once the
application is notified, it may abort, or it may delete and
re-create the queue in order to continue submitting
dispatches to the AMD GPU. If the application deletes a
queue then all information about the waves executing on
the queue will be lost, preventing the client from
determining if a wave caused the error.

2.18.3.3 amd_dbgapi_runtime_state_t

enum amd_dbgapi_runtime_state_t

Inferior's runtime state.

Enumerator

AMD_DBGAPI_RUNTIME_STATE_LOADED_←↩

SUCCESS
The inferior's runtime has been loaded and debugging is
supported by the library.

AMD_DBGAPI_RUNTIME_STATE_UNLOADED The inferior's runtime has been unloaded.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.18 Events 143

Enumerator

AMD_DBGAPI_RUNTIME_STATE_LOADED_←↩

ERROR_RESTRICTION
The inferior's runtime has been loaded but there is a
restriction error that prevents debugging the process.
See AMD_DBGAPI_STATUS_ERROR_RESTRICTION
for possible reasons.

2.18.4 Function Documentation

2.18.4.1 amd_dbgapi_event_get_info()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_event_get_info (

amd_dbgapi_event_id_t event_id,

amd_dbgapi_event_info_t query,

size_t value_size,

void ∗ value)

Query information about an event.

amd_dbgapi_event_info_t specifies the queries supported and the type returned using the value argument.

Parameters

in event_id The event being queried.

in query The query being requested.

in value_size Size of the memory pointed to by value. Must be equal to the byte size of the query result.

out value Pointer to memory where the query result is stored.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in value.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_EVENT_ID event_id is invalid or the NULL event. value is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT value is NULL or query is for an attribute not present
for the kind of the event. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYvalue_size does not match the size of the query
result. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate value returns NULL. value is
unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

144 Topic Documentation

2.18.4.2 amd_dbgapi_event_processed()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_event_processed (

amd_dbgapi_event_id_t event_id)

Report that an event has been processed.

Every event returned by amd_dbgapi_process_next_pending_event must be reported as processed exactly once.
Events do not have to be reported completed in the same order they are retrieved.

Parameters

in event←↩

_id
The event that has been processed.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
event has been reported as processed. The
event_id is invalidated.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized.

AMD_DBGAPI_STATUS_ERROR_INVALID_EVENT_ID The event_id is invalid or the NULL event. No event
is marked as processed.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT event_id or kind are NULL. No event is marked as
processed.

2.18.4.3 amd_dbgapi_process_next_pending_event()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_next_pending_event (

amd_dbgapi_process_id_t process_id,

amd_dbgapi_event_id_t ∗ event_id,

amd_dbgapi_event_kind_t ∗ kind)

Obtain the next pending event.

The order events are returned is unspecified. If the client requires fairness then it can retrieve all pending events and
randomize the order of processing.

Parameters

in process←↩

_id
If AMD_DBGAPI_PROCESS_NONE then retrieve a pending event from any processes.
Otherwise, retrieve a pending event from process process_id.

out event_id The event handle of the next pending event. Each event is only returned once. If there are
no pending events the AMD_DBGAPI_EVENT_NONE handle is returned.

out kind The kind of the returned event. If there are no pending events, then
AMD_DBGAPI_EVENT_KIND_NONE is returned.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.19 Logging 145

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and an
event or the NULL event has been returned.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized;
and event_id and kind are unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized; and event_id and kind are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_IDThe process_id is invalid. No event is retrieved and
event_id and kind are unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT event_id or kind are NULL. No event is retrieved
and event_id and kind are unaltered.

2.19 Logging

Control logging.

Enumerations

• enum amd_dbgapi_log_level_t {
AMD_DBGAPI_LOG_LEVEL_NONE = 0 ,
AMD_DBGAPI_LOG_LEVEL_FATAL_ERROR = 1 ,
AMD_DBGAPI_LOG_LEVEL_WARNING = 2 ,
AMD_DBGAPI_LOG_LEVEL_INFO = 3 ,
AMD_DBGAPI_LOG_LEVEL_TRACE = 4 ,
AMD_DBGAPI_LOG_LEVEL_VERBOSE = 5 }

The logging levels supported.

Functions

• void AMD_DBGAPI amd_dbgapi_set_log_level (amd_dbgapi_log_level_t level) AMD_DBGAPI_VERSION_0_54

Set the logging level.

2.19.1 Detailed Description

Control logging.

When the library is initially loaded the logging level is set to AMD_DBGAPI_LOG_LEVEL_NONE. The log level is not
changed by amd_dbgapi_initialize or amd_dbgapi_finalize.

The log messages are delivered to the client using the amd_dbgapi_callbacks_s::log_message call back.

Note that logging can be helpful for debugging.

2.19.2 Enumeration Type Documentation

2.19.2.1 amd_dbgapi_log_level_t

enum amd_dbgapi_log_level_t

The logging levels supported.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

146 Topic Documentation

Enumerator

AMD_DBGAPI_LOG_LEVEL_NONE Print no messages.

AMD_DBGAPI_LOG_LEVEL_FATAL_ERROR Print fatal error messages. Any library function that returns the
AMD_DBGAPI_STATUS_FATAL status code also logs a message
with this level.

AMD_DBGAPI_LOG_LEVEL_WARNING Print fatal error and warning messages.

AMD_DBGAPI_LOG_LEVEL_INFO Print fatal error, warning, and info messages.

AMD_DBGAPI_LOG_LEVEL_TRACE Print fatal error, warning, info, and API tracing messages.

AMD_DBGAPI_LOG_LEVEL_VERBOSE Print fatal error, warning, info, API tracing, and verbose
messages.

2.19.3 Function Documentation

2.19.3.1 amd_dbgapi_set_log_level()

void AMD_DBGAPI amd_dbgapi_set_log_level (

amd_dbgapi_log_level_t level)

Set the logging level.

Internal logging messages less than the set logging level will not be reported. If AMD_DBGAPI_LOG_LEVEL_NONE
then no messages will be reported.

This function can be used even when the library is uninitialized. However, no messages will be reported until the library
is initialized when the callbacks are provided.

Parameters

in level The logging level to set.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT level is invalid. The logging level is ot changed.

2.20 Callbacks

The library requires the client to provide a number of services.

Data Structures

• struct amd_dbgapi_breakpoint_id_t

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.20 Callbacks 147

Opaque breakpoint handle.

• struct amd_dbgapi_callbacks_s

Callbacks that the client of the library must provide.

Macros

• #define AMD_DBGAPI_BREAKPOINT_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_breakpoint_id_t,
0)

The NULL breakpoint handle.

Typedefs

• typedef struct amd_dbgapi_callbacks_s amd_dbgapi_callbacks_t

Forward declaration of callbacks used to specify services that must be provided by the client.

• typedef struct amd_dbgapi_client_thread_s ∗ amd_dbgapi_client_thread_id_t

Opaque client thread handle.

Enumerations

• enum amd_dbgapi_breakpoint_info_t { AMD_DBGAPI_BREAKPOINT_INFO_PROCESS = 1 }

Breakpoint queries that are supported by amd_dbgapi_breakpoint_get_info.

• enum amd_dbgapi_breakpoint_action_t {
AMD_DBGAPI_BREAKPOINT_ACTION_RESUME = 1 ,
AMD_DBGAPI_BREAKPOINT_ACTION_HALT = 2 }

The action to perform after reporting a breakpoint has been hit.

• enum amd_dbgapi_client_process_info_t {
AMD_DBGAPI_CLIENT_PROCESS_INFO_OS_PID = 1 ,
AMD_DBGAPI_CLIENT_PROCESS_INFO_CORE_STATE = 2 }

Client queries that are supported by the client_process_get_info callback.

Functions

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_breakpoint_get_info (amd_dbgapi_breakpoint_id_t breakpoint←↩

_id, amd_dbgapi_breakpoint_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_54

Query information about a breakpoint.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_report_breakpoint_hit (amd_dbgapi_breakpoint_id_t
breakpoint_id, amd_dbgapi_client_thread_id_t client_thread_id, amd_dbgapi_breakpoint_action_t ∗breakpoint←↩

_action) AMD_DBGAPI_VERSION_0_54

Report that a breakpoint inserted by the amd_dbgapi_callbacks_s::insert_breakpoint callback has been hit.

2.20.1 Detailed Description

The library requires the client to provide a number of services.

These services are specified by providing callbacks when initializing the library using amd_dbgapi_initialize.

The callbacks defined in this section are invoked by the library and must not themselves invoke any function provided
by the library before returning.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

148 Topic Documentation

2.20.2 Macro Definition Documentation

2.20.2.1 AMD_DBGAPI_BREAKPOINT_NONE

#define AMD_DBGAPI_BREAKPOINT_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_breakpoint_id_t, 0)

The NULL breakpoint handle.

2.20.3 Typedef Documentation

2.20.3.1 amd_dbgapi_callbacks_t

typedef struct amd_dbgapi_callbacks_s amd_dbgapi_callbacks_t

Forward declaration of callbacks used to specify services that must be provided by the client.

2.20.3.2 amd_dbgapi_client_thread_id_t

typedef struct amd_dbgapi_client_thread_s∗ amd_dbgapi_client_thread_id_t

Opaque client thread handle.

A pointer to client data associated with a thread. This pointer is passed in to the amd_dbgapi_report_breakpoint_hit
so it can be passed out by the AMD_DBGAPI_EVENT_KIND_BREAKPOINT_RESUME event to allow the client of the
library to identify the thread that must be resumed.

2.20.4 Enumeration Type Documentation

2.20.4.1 amd_dbgapi_breakpoint_action_t

enum amd_dbgapi_breakpoint_action_t

The action to perform after reporting a breakpoint has been hit.

Enumerator

AMD_DBGAPI_BREAKPOINT_ACTION_RESUME Resume execution.
AMD_DBGAPI_BREAKPOINT_ACTION_HALT Leave execution halted.

2.20.4.2 amd_dbgapi_breakpoint_info_t

enum amd_dbgapi_breakpoint_info_t

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.20 Callbacks 149

Breakpoint queries that are supported by amd_dbgapi_breakpoint_get_info.

Each query specifies the type of data returned in the value argument to amd_dbgapi_breakpoint_get_info.

Enumerator

AMD_DBGAPI_BREAKPOINT_INFO_PROCESS Return the process to which this breakpoint belongs. The type
of this attribute is amd_dbgapi_process_id_t.

2.20.4.3 amd_dbgapi_client_process_info_t

enum amd_dbgapi_client_process_info_t

Client queries that are supported by the client_process_get_info callback.

Each query specifies the type of data returned in the value argument to amd_dbgapi_callbacks_s::client_process_get_info.

Enumerator

AMD_DBGAPI_CLIENT_PROCESS_INFO_OS_PID Return the native operating system process handle.
This value is required to not change during the lifetime
of the process associated with the client process handle.
For Linux® this is the pid_t from sys/types.h and
the corresponding process is required to have already
been ptrace enabled.
The type of this attribute is
amd_dbgapi_os_process_id_t.

AMD_DBGAPI_CLIENT_PROCESS_INFO_CORE_←↩

STATE
If the current process is created from a core file, return
the content of the AMDGPU state note if present. If the
process image is not created from a core dump or if
such state note is not present in the core dump, the
client_process_get_info callback returns
AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE.
The type of this attribute is
amd_dbgapi_core_state_data_t.

2.20.5 Function Documentation

2.20.5.1 amd_dbgapi_breakpoint_get_info()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_breakpoint_get_info (

amd_dbgapi_breakpoint_id_t breakpoint_id,

amd_dbgapi_breakpoint_info_t query,

size_t value_size,

void ∗ value)

Query information about a breakpoint.

amd_dbgapi_breakpoint_info_t specifies the queries supported and the type returned using the value argument.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

150 Topic Documentation

Parameters

in breakpoint←↩

_id
The handle of the breakpoint being queried.

in query The query being requested.

in value_size Size of the memory pointed to by value. Must be equal to the byte size of the query result.

out value Pointer to memory where the query result is stored.

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and the
result is stored in value.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
value is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_BREAKPOINT_IDbreakpoint_id is invalid. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT value is NULL or query is invalid. value is
unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITYvalue_size does not match the size of the query
result. value is unaltered.

AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK This will be reported if the
amd_dbgapi_callbacks_s::allocate_memory callback
used to allocate value returns NULL. value is
unaltered.

2.20.5.2 amd_dbgapi_report_breakpoint_hit()

amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_report_breakpoint_hit (

amd_dbgapi_breakpoint_id_t breakpoint_id,

amd_dbgapi_client_thread_id_t client_thread_id,

amd_dbgapi_breakpoint_action_t ∗ breakpoint_action)

Report that a breakpoint inserted by the amd_dbgapi_callbacks_s::insert_breakpoint callback has been hit.

The thread that hit the breakpoint must remain halted while this function executes, at which point it must be re-
sumed if breakpoint_action is AMD_DBGAPI_BREAKPOINT_ACTION_RESUME. If breakpoint_action
is :AMD_DBGAPI_BREAKPOINT_ACTION_HALT then the client should process pending events which will cause a
AMD_DBGAPI_EVENT_KIND_BREAKPOINT_RESUME event to be added which specifies that the thread should now
be resumed.

Parameters

in breakpoint_id The breakpoint that has been hit.

in client_thread_id The client identification of the thread that hit the breakpoint.

out breakpoint_action Indicate if the thread hitting the breakpoint should be resumed or remain halted when
this function returns.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

2.20 Callbacks 151

Return values

AMD_DBGAPI_STATUS_SUCCESS The function has been executed successfully and
breakpoint_action indicates if the thread hitting
the breakpoint should be resumed.

AMD_DBGAPI_STATUS_FATAL A fatal error occurred. The library is left uninitialized and
breakpoint_action is unaltered.

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED The library is not initialized. The library is left
uninitialized and breakpoint_action is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_BREAKPOINT_IDThe breakpoint_id is invalid.
breakpoint_action is unaltered.

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT breakpoint_action is NULL.
breakpoint_action is unaltered.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

152 Topic Documentation

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

Chapter 3

Data Structure Documentation

3.1 amd_dbgapi_address_class_id_t Struct Reference

Opaque source language address class handle.

#include <amd-dbgapi.h>

Data Fields

• uint64_t handle

3.1.1 Detailed Description

Opaque source language address class handle.

A source language address class describes the source language address spaces. It is used to define source language
pointer and reference types. Each architecture has its own mapping of them to the architecture specific address spaces.

Globally unique for a single library instance.

See [User Guide for AMDGPU Backend - Code Object - DWARF - Address Class Mapping] (https://llvm.←↩

org/docs/AMDGPUUsage.html#address-class-mapping).

3.1.2 Field Documentation

3.1.2.1 handle

uint64_t amd_dbgapi_address_class_id_t::handle

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

https://llvm.org/docs/AMDGPUUsage.html#address-class-mapping
https://llvm.org/docs/AMDGPUUsage.html#address-class-mapping

154 Data Structure Documentation

3.2 amd_dbgapi_address_space_id_t Struct Reference

Opaque address space handle.

#include <amd-dbgapi.h>

Data Fields

• uint64_t handle

3.2.1 Detailed Description

Opaque address space handle.

A handle that denotes the set of address spaces supported by an architecture.

Globally unique for a single library instance.

See [User Guide for AMDGPU Backend - LLVM - Address Spaces] (https://llvm.org/docs/←↩

AMDGPUUsage.html#address-spaces).

3.2.2 Field Documentation

3.2.2.1 handle

uint64_t amd_dbgapi_address_space_id_t::handle

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

3.3 amd_dbgapi_agent_id_t Struct Reference

Opaque agent handle.

#include <amd-dbgapi.h>

Data Fields

• uint64_t handle

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

https://llvm.org/docs/AMDGPUUsage.html#address-spaces
https://llvm.org/docs/AMDGPUUsage.html#address-spaces

3.4 amd_dbgapi_architecture_id_t Struct Reference 155

3.3.1 Detailed Description

Opaque agent handle.

Globally unique for a single library instance.

3.3.2 Field Documentation

3.3.2.1 handle

uint64_t amd_dbgapi_agent_id_t::handle

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

3.4 amd_dbgapi_architecture_id_t Struct Reference

Opaque architecture handle.

#include <amd-dbgapi.h>

Data Fields

• uint64_t handle

3.4.1 Detailed Description

Opaque architecture handle.

There is an architecture handle for each AMD GPU model supported by the library.

Globally unique for a single library instance.

3.4.2 Field Documentation

3.4.2.1 handle

uint64_t amd_dbgapi_architecture_id_t::handle

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

156 Data Structure Documentation

3.5 amd_dbgapi_breakpoint_id_t Struct Reference

Opaque breakpoint handle.

#include <amd-dbgapi.h>

Data Fields

• uint64_t handle

3.5.1 Detailed Description

Opaque breakpoint handle.

The implementation of the library requests the client to insert breakpoints in certain functions so that it can be notified
when certain actions are being performed, and to stop the thread performing the action. This allows the data to be
retrieved and updated without conflicting with the thread. The library will resume the thread when it has completed the
access.

Globally unique for a single library instance.

3.5.2 Field Documentation

3.5.2.1 handle

uint64_t amd_dbgapi_breakpoint_id_t::handle

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

3.6 amd_dbgapi_callbacks_s Struct Reference

Callbacks that the client of the library must provide.

#include <amd-dbgapi.h>

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

3.6 amd_dbgapi_callbacks_s Struct Reference 157

Data Fields

• void ∗(∗ allocate_memory)(size_t byte_size)

Allocate memory to be used to return a value from the library that is then owned by the client.

• void(∗ deallocate_memory)(void ∗data)

Deallocate memory that was allocated by amd_dbgapi_callbacks_s::allocate_memory.

• amd_dbgapi_status_t(∗ client_process_get_info)(amd_dbgapi_client_process_id_t client_process_id, amd_dbgapi_client_process_info_t
query, size_t value_size, void ∗value)

Query information about the client process.

• amd_dbgapi_status_t(∗ insert_breakpoint)(amd_dbgapi_client_process_id_t client_process_id, amd_dbgapi_global_address_t
address, amd_dbgapi_breakpoint_id_t breakpoint_id)

Insert a breakpoint in a shared library using a global address.

• amd_dbgapi_status_t(∗ remove_breakpoint)(amd_dbgapi_client_process_id_t client_process_id, amd_dbgapi_breakpoint_id_t
breakpoint_id)

Remove a breakpoint previously inserted by amd_dbgapi_callbacks_s::insert_breakpoint.

• amd_dbgapi_status_t(∗ xfer_global_memory)(amd_dbgapi_client_process_id_t client_process_id, amd_dbgapi_global_address_t
global_address, amd_dbgapi_size_t ∗value_size, void ∗read_buffer, const void ∗write_buffer)

Uncached global memory transfer.

• void(∗ log_message)(amd_dbgapi_log_level_t level, const char ∗message)

Report a log message.

3.6.1 Detailed Description

Callbacks that the client of the library must provide.

The client implementation of the callbacks must not invoke any operation of the library.

3.6.2 Field Documentation

3.6.2.1 allocate_memory

void ∗(∗ amd_dbgapi_callbacks_s::allocate_memory) (size_t byte_size)

Allocate memory to be used to return a value from the library that is then owned by the client.

The memory should be suitably aligned for any type. If byte_size is 0 or if unable to allocate memory of the byte
size specified by byte_size then return NULL and allocate no memory. The client is responsible for deallocating
this memory, and so is responsible for tracking the size of the allocation. Note that these requirements can be met by
implementing using malloc.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

158 Data Structure Documentation

3.6.2.2 client_process_get_info

amd_dbgapi_status_t(∗ amd_dbgapi_callbacks_s::client_process_get_info) (amd_dbgapi_client_process_id_t

client_process_id, amd_dbgapi_client_process_info_t query, size_t value_size, void ∗value)

Query information about the client process.

client_process_id is the client handle of the process for which the operating system process handle is being
queried.

query identifies the client process information queried by the library.

value_size is the size in bytes of the buffer value points to.

value points to a buffer of size value_size where the client should copy the value requested by the library.

Return AMD_DBGAPI_STATUS_SUCCESS if successful and value is updated.

Return AMD_DBGAPI_STATUS_ERROR_INVALID_CLIENT_PROCESS_ID if the client_process_id handle is
invalid.

Return AMD_DBGAPI_STATUS_ERROR_PROCESS_EXITED if the client_process_id handle is associated
with a native operating system process that has already exited.

Return AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT if value is NULL.

Return AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE if the requested information is not available for the process
referenced by client_process_id.

Return AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITY if value_size does not match
the size of the data requested by the library.

Return AMD_DBGAPI_STATUS_ERROR if an error was encountered.

3.6.2.3 deallocate_memory

void(∗ amd_dbgapi_callbacks_s::deallocate_memory) (void ∗data)

Deallocate memory that was allocated by amd_dbgapi_callbacks_s::allocate_memory.

data will be a pointer returned by amd_dbgapi_callbacks_s::allocate_memory that will not be returned to the
client. If data is NULL then it indicates the allocation failed or was for 0 bytes: in either case the callback is
required to take no action. If data is not NULL then it will not have been deallocated by a previous call to
amd_dbgapi_callbacks_s::allocate_memory. Note that these requirements can be met by implementing using free.

Note this callback may be used by the library implementation if it encounters an error after using amd_dbgapi_callbacks_s::allocate_memory
to allocate memory.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

3.6 amd_dbgapi_callbacks_s Struct Reference 159

3.6.2.4 insert_breakpoint

amd_dbgapi_status_t(∗ amd_dbgapi_callbacks_s::insert_breakpoint) (amd_dbgapi_client_process_id_t

client_process_id, amd_dbgapi_global_address_t address, amd_dbgapi_breakpoint_id_t breakpoint_id)

Insert a breakpoint in a shared library using a global address.

The library only inserts breakpoints in loaded shared libraries. It will request to be notified when the shared library is
unloaded, and will remove any breakpoints it has inserted when notified that the shared library is unloaded.

It is the client's responsibility to to actually insert the breakpoint.

client_process_id is the client handle of the process in which the breakpoint is to be added.

address is the global address to add the breakpoint.

breakpoint_id is the handle to identify this breakpoint. Each added breakpoint for a process will have
a unique handle, multiple breakpoints for the same process will not be added with the same handle. It
must be specified when amd_dbgapi_report_breakpoint_hit is used to report a breakpoint hit, and in the
AMD_DBGAPI_EVENT_KIND_BREAKPOINT_RESUME event that may be used to resume the thread.

Return AMD_DBGAPI_STATUS_SUCCESS if successful. The breakpoint is added.

Return AMD_DBGAPI_STATUS_ERROR_INVALID_CLIENT_PROCESS_ID if the client_process_id handle is
invalid. No breakpoint is added.

Return AMD_DBGAPI_STATUS_ERROR_INVALID_BREAKPOINT_ID if there is a breakpoint already added with
breakpoint_id. No breakpoint is added.

Return AMD_DBGAPI_STATUS_ERROR if another error was encountered. No breakpoint is inserted and the
breakpoint_id handle is invalidated.

3.6.2.5 log_message

void(∗ amd_dbgapi_callbacks_s::log_message) (amd_dbgapi_log_level_t level, const char ∗message)

Report a log message.

level is the log level.

message is a NUL terminated string to print that is owned by the library and is only valid while the callback executes.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

160 Data Structure Documentation

3.6.2.6 remove_breakpoint

amd_dbgapi_status_t(∗ amd_dbgapi_callbacks_s::remove_breakpoint) (amd_dbgapi_client_process_id_t

client_process_id, amd_dbgapi_breakpoint_id_t breakpoint_id)

Remove a breakpoint previously inserted by amd_dbgapi_callbacks_s::insert_breakpoint.

It is the client's responsibility to to actually remove the breakpoint.

breakpoint_id is invalidated.

client_process_id is the client handle of the process in which the breakpoint is to be removed.

breakpoint_id is the breakpoint handle of the breakpoint to remove.

Return AMD_DBGAPI_STATUS_SUCCESS if successful. The breakpoint is removed.

Return AMD_DBGAPI_STATUS_ERROR_INVALID_CLIENT_PROCESS_ID if the client_process_id handle is
invalid. No breakpoint is removed.

Return AMD_DBGAPI_STATUS_ERROR_INVALID_BREAKPOINT_ID if breakpoint_id handle is invalid. No
breakpoint is removed.

Return ::AMD_DBGAPI_STATUS_ERROR_LIBRARY_NOT_LOADED if the shared library containing the breakpoint is
not currently loaded. The breakpoint will already have been removed.

Return AMD_DBGAPI_STATUS_ERROR if another error was encountered. The breakpoint is considered removed and
the breakpoint_id handle is invalidated.

3.6.2.7 xfer_global_memory

amd_dbgapi_status_t(∗ amd_dbgapi_callbacks_s::xfer_global_memory) (amd_dbgapi_client_process_id_t

client_process_id, amd_dbgapi_global_address_t global_address, amd_dbgapi_size_t ∗value_size, void

∗read_buffer, const void ∗write_buffer)

Uncached global memory transfer.

client_process_id is the client handle of the process for which the memory transfer is being requested.

global_address is the global address space address of the start of the memory transfer being requested.

value_size is the number of bytes of the memory transfer being requested.

read_buffer if not NULL then a read transfer is being requested. On return, contains the read bytes and value←↩

_size is set to the number of bytes actually read.

write_buffer if not NULL then a write transfer is being requested. Contains the bytes to be written. On return
value_size is set to the number of bytes actually written.

Return AMD_DBGAPI_STATUS_SUCCESS if successful.

Return AMD_DBGAPI_STATUS_ERROR_INVALID_CLIENT_PROCESS_ID if the client_process_id handle is
invalid.

Return AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITY if not only one of read_buffer and
write_puffer are NULL.

Return AMD_DBGAPI_STATUS_ERROR_PROCESS_EXITED if the client_process_id handle is associated
with a native operating system process that has already exited.

Return AMD_DBGAPI_STATUS_ERROR_MEMORY_ACCESS if the input value_size was greater than 0 and no
bytes were successfully transferred. The output value_size is set to 0. read_buffer and write_buffer are
unaltered.

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

3.7 amd_dbgapi_code_object_id_t Struct Reference 161

3.7 amd_dbgapi_code_object_id_t Struct Reference

Opaque code object handle.

#include <amd-dbgapi.h>

Data Fields

• uint64_t handle

3.7.1 Detailed Description

Opaque code object handle.

Globally unique for a single library instance.

3.7.2 Field Documentation

3.7.2.1 handle

uint64_t amd_dbgapi_code_object_id_t::handle

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

3.8 amd_dbgapi_core_state_data_t Struct Reference

AMDGPU corefile state data for a process.

#include <amd-dbgapi.h>

Data Fields

• amd_dbgapi_endianness_t endianness

Endianness encoding of the core state.

• size_t size

Size, in bytes, of the buffer pointed by amd_dbgapi_core_state_data_t::data.

• const void ∗ data

Pointer to the buffer containing the core state data.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

162 Data Structure Documentation

3.8.1 Detailed Description

AMDGPU corefile state data for a process.

3.8.2 Field Documentation

3.8.2.1 data

const void∗ amd_dbgapi_core_state_data_t::data

Pointer to the buffer containing the core state data.

The buffer is amd_dbgapi_core_state_data_t::size bytes long. See [User Guide for AMDGPU Backend - Core file notes]
(https://llvm.org/docs/AMDGPUUsage.html#amdgpu-corefile-note).

3.8.2.2 endianness

amd_dbgapi_endianness_t amd_dbgapi_core_state_data_t::endianness

Endianness encoding of the core state.

3.8.2.3 size

size_t amd_dbgapi_core_state_data_t::size

Size, in bytes, of the buffer pointed by amd_dbgapi_core_state_data_t::data.

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

https://llvm.org/docs/AMDGPUUsage.html#amdgpu-corefile-note

3.9 amd_dbgapi_direct_call_register_pair_information_t Struct Reference 163

3.9 amd_dbgapi_direct_call_register_pair_information_t Struct Reference

Instruction information for direct call instructions.

#include <amd-dbgapi.h>

Collaboration diagram for amd_dbgapi_direct_call_register_pair_information_t:

amd_dbgapi_direct_call
_register_pair_information_t

amd_dbgapi_register_id_t

 saved_return_address
_register

Data Fields

• amd_dbgapi_global_address_t target_address
• amd_dbgapi_register_id_t saved_return_address_register [2]

3.9.1 Detailed Description

Instruction information for direct call instructions.

Used by amd_dbgapi_classify_instruction to report the target address and saved return registers IDs information for
instructions of the AMD_DBGAPI_INSTRUCTION_KIND_DIRECT_CALL_REGISTER_PAIR kind.

3.9.2 Field Documentation

3.9.2.1 saved_return_address_register

amd_dbgapi_register_id_t amd_dbgapi_direct_call_register_pair_information_t::saved_return_address←↩

_register[2]

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

164 Data Structure Documentation

3.9.2.2 target_address

amd_dbgapi_global_address_t amd_dbgapi_direct_call_register_pair_information_t::target_address

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

3.10 amd_dbgapi_dispatch_id_t Struct Reference

Opaque dispatch handle.

#include <amd-dbgapi.h>

Data Fields

• uint64_t handle

3.10.1 Detailed Description

Opaque dispatch handle.

Globally unique for a single library instance.

3.10.2 Field Documentation

3.10.2.1 handle

uint64_t amd_dbgapi_dispatch_id_t::handle

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

3.11 amd_dbgapi_displaced_stepping_id_t Struct Reference

Opaque displaced stepping handle.

#include <amd-dbgapi.h>

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

3.12 amd_dbgapi_event_id_t Struct Reference 165

Data Fields

• uint64_t handle

3.11.1 Detailed Description

Opaque displaced stepping handle.

Globally unique for a single library instance.

3.11.2 Field Documentation

3.11.2.1 handle

uint64_t amd_dbgapi_displaced_stepping_id_t::handle

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

3.12 amd_dbgapi_event_id_t Struct Reference

Opaque event handle.

#include <amd-dbgapi.h>

Data Fields

• uint64_t handle

3.12.1 Detailed Description

Opaque event handle.

Globally unique for a single library instance.

3.12.2 Field Documentation

3.12.2.1 handle

uint64_t amd_dbgapi_event_id_t::handle

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

166 Data Structure Documentation

3.13 amd_dbgapi_process_id_t Struct Reference

Opaque process handle.

#include <amd-dbgapi.h>

Data Fields

• uint64_t handle

3.13.1 Detailed Description

Opaque process handle.

All operations that control an AMD GPU specify the process that is using the AMD GPU with the process handle. It is
undefined to use handles returned by operations performed for one process, with operations performed for a different
process.

Globally unique for a single library instance.

3.13.2 Field Documentation

3.13.2.1 handle

uint64_t amd_dbgapi_process_id_t::handle

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

3.14 amd_dbgapi_queue_id_t Struct Reference

Opaque queue handle.

#include <amd-dbgapi.h>

Data Fields

• uint64_t handle

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

3.15 amd_dbgapi_register_class_id_t Struct Reference 167

3.14.1 Detailed Description

Opaque queue handle.

Globally unique for a single library instance.

3.14.2 Field Documentation

3.14.2.1 handle

uint64_t amd_dbgapi_queue_id_t::handle

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

3.15 amd_dbgapi_register_class_id_t Struct Reference

Opaque register class handle.

#include <amd-dbgapi.h>

Data Fields

• uint64_t handle

3.15.1 Detailed Description

Opaque register class handle.

A handle that denotes the set of classes of hardware registers supported by an architecture. The registers of the
architecture all belong to one or more register classes. The register classes are a convenience for grouping registers
that have similar uses and properties. They can be useful when presenting register lists to a user. For example, there
could be a register class for system, general, and vector.

Globally unique for a single library instance.

3.15.2 Field Documentation

3.15.2.1 handle

uint64_t amd_dbgapi_register_class_id_t::handle

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

168 Data Structure Documentation

3.16 amd_dbgapi_register_id_t Struct Reference

Opaque register handle.

#include <amd-dbgapi.h>

Data Fields

• uint64_t handle

3.16.1 Detailed Description

Opaque register handle.

A handle that denotes the set of hardware registers supported by an architecture.

Globally unique for a single library instance.

3.16.2 Field Documentation

3.16.2.1 handle

uint64_t amd_dbgapi_register_id_t::handle

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

3.17 amd_dbgapi_watchpoint_id_t Struct Reference

Opaque hardware data watchpoint handle.

#include <amd-dbgapi.h>

Data Fields

• uint64_t handle

3.17.1 Detailed Description

Opaque hardware data watchpoint handle.

Globally unique for a single library instance.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

3.18 amd_dbgapi_watchpoint_list_t Struct Reference 169

3.17.2 Field Documentation

3.17.2.1 handle

uint64_t amd_dbgapi_watchpoint_id_t::handle

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

3.18 amd_dbgapi_watchpoint_list_t Struct Reference

A set of watchpoints.

#include <amd-dbgapi.h>

Collaboration diagram for amd_dbgapi_watchpoint_list_t:

amd_dbgapi_watchpoint
_list_t

amd_dbgapi_watchpoint_id_t

 watchpoint_ids

Data Fields

• size_t count
• amd_dbgapi_watchpoint_id_t ∗ watchpoint_ids

3.18.1 Detailed Description

A set of watchpoints.

Used by the AMD_DBGAPI_WAVE_INFO_WATCHPOINTS query to report the watchpoint(s) triggered by a wave.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

170 Data Structure Documentation

3.18.2 Field Documentation

3.18.2.1 count

size_t amd_dbgapi_watchpoint_list_t::count

3.18.2.2 watchpoint_ids

amd_dbgapi_watchpoint_id_t∗ amd_dbgapi_watchpoint_list_t::watchpoint_ids

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

3.19 amd_dbgapi_wave_id_t Struct Reference

Opaque wave handle.

#include <amd-dbgapi.h>

Data Fields

• uint64_t handle

3.19.1 Detailed Description

Opaque wave handle.

Waves are the way the AMD GPU executes code.

Globally unique for a single library instance.

3.19.2 Field Documentation

3.19.2.1 handle

uint64_t amd_dbgapi_wave_id_t::handle

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

3.20 amd_dbgapi_workgroup_id_t Struct Reference 171

3.20 amd_dbgapi_workgroup_id_t Struct Reference

Opaque workgroup handle.

#include <amd-dbgapi.h>

Data Fields

• uint64_t handle

3.20.1 Detailed Description

Opaque workgroup handle.

AMD GPU executes code as waves organized into workgroups.

Globally unique for a single library instance.

3.20.2 Field Documentation

3.20.2.1 handle

uint64_t amd_dbgapi_workgroup_id_t::handle

The documentation for this struct was generated from the following file:

• include/amd-dbgapi/amd-dbgapi.h

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

172 Data Structure Documentation

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

Chapter 4

File Documentation

4.1 include/amd-dbgapi/amd-dbgapi.h File Reference

AMD debugger API interface.

#include <sys/types.h>
#include <stddef.h>
#include <stdint.h>
Include dependency graph for amd-dbgapi.h:

include/amd-dbgapi
/amd-dbgapi.h

sys/types.h stddef.h stdint.h

Data Structures

• struct amd_dbgapi_architecture_id_t

Opaque architecture handle.

• struct amd_dbgapi_process_id_t

Opaque process handle.

• struct amd_dbgapi_core_state_data_t

AMDGPU corefile state data for a process.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

174 File Documentation

• struct amd_dbgapi_code_object_id_t

Opaque code object handle.

• struct amd_dbgapi_agent_id_t

Opaque agent handle.

• struct amd_dbgapi_queue_id_t

Opaque queue handle.

• struct amd_dbgapi_dispatch_id_t

Opaque dispatch handle.

• struct amd_dbgapi_workgroup_id_t

Opaque workgroup handle.

• struct amd_dbgapi_wave_id_t

Opaque wave handle.

• struct amd_dbgapi_displaced_stepping_id_t

Opaque displaced stepping handle.

• struct amd_dbgapi_watchpoint_id_t

Opaque hardware data watchpoint handle.

• struct amd_dbgapi_watchpoint_list_t

A set of watchpoints.

• struct amd_dbgapi_register_class_id_t

Opaque register class handle.

• struct amd_dbgapi_register_id_t

Opaque register handle.

• struct amd_dbgapi_direct_call_register_pair_information_t

Instruction information for direct call instructions.

• struct amd_dbgapi_address_class_id_t

Opaque source language address class handle.

• struct amd_dbgapi_address_space_id_t

Opaque address space handle.

• struct amd_dbgapi_event_id_t

Opaque event handle.

• struct amd_dbgapi_breakpoint_id_t

Opaque breakpoint handle.

• struct amd_dbgapi_callbacks_s

Callbacks that the client of the library must provide.

Macros

• #define AMD_DBGAPI_CALL
• #define AMD_DBGAPI_EXPORT AMD_DBGAPI_EXPORT_DECORATOR AMD_DBGAPI_CALL
• #define AMD_DBGAPI_IMPORT AMD_DBGAPI_IMPORT_DECORATOR AMD_DBGAPI_CALL
• #define AMD_DBGAPI AMD_DBGAPI_IMPORT
• #define AMD_DBGAPI_HANDLE_LITERAL(type, value) {value}
• #define DEPRECATED = AMD_DBGAPI_WAVE_STOP_REASON_ADDRESS_ERROR

Old deprecated name kept for backward compatibility.

• #define AMD_DBGAPI_VERSION_0_54

The function was introduced in version 0.54 of the interface and has the symbol version string of "AMD_DBGAPI_0.54".

• #define AMD_DBGAPI_VERSION_0_56

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

4.1 include/amd-dbgapi/amd-dbgapi.h File Reference 175

The function was introduced in version 0.56 of the interface and has the symbol version string of "AMD_DBGAPI_0.56".

• #define AMD_DBGAPI_VERSION_0_58

The function was introduced in version 0.58 of the interface and has the symbol version string of "AMD_DBGAPI_0.58".

• #define AMD_DBGAPI_VERSION_0_62

The function was introduced in version 0.62 of the interface and has the symbol version string of "AMD_DBGAPI_0.62".

• #define AMD_DBGAPI_VERSION_0_64

The function was introduced in version 0.64 of the interface and has the symbol version string of "AMD_DBGAPI_0.64".

• #define AMD_DBGAPI_VERSION_0_67

The function was introduced in version 0.67 of the interface and has the symbol version string of "AMD_DBGAPI_0.67".

• #define AMD_DBGAPI_VERSION_0_68

The function was introduced in version 0.68 of the interface and has the symbol version string of "AMD_DBGAPI_0.68".

• #define AMD_DBGAPI_VERSION_0_70

The function was introduced in version 0.70 of the interface and has the symbol version string of "AMD_DBGAPI_0.70".

• #define AMD_DBGAPI_VERSION_0_76

The function was introduced in version 0.76 of the interface and has the symbol version string of "AMD_DBGAPI_0.76".

• #define AMD_DBGAPI_VERSION_0_77

The function was introduced in version 0.77 of the interface and has the symbol version string of "AMD_DBGAPI_0.77".

• #define AMD_DBGAPI_VERSION_MAJOR 0

The semantic version of the interface following [semver.org][semver] rules.

• #define AMD_DBGAPI_VERSION_MINOR 77

The minor version of the interface as a macro so it can be used by the preprocessor.

• #define AMD_DBGAPI_ARCHITECTURE_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_architecture_id_t,
0)

The NULL architecture handle.

• #define AMD_DBGAPI_PROCESS_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_process_id_t, 0)

The NULL process handle.

• #define AMD_DBGAPI_CODE_OBJECT_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_code_object_id_t,
0)

The NULL code object handle.

• #define AMD_DBGAPI_AGENT_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_agent_id_t, 0)

The NULL agent handle.

• #define AMD_DBGAPI_QUEUE_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_queue_id_t, 0)

The NULL queue handle.

• #define AMD_DBGAPI_DISPATCH_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_dispatch_id_t, 0)

The NULL dispatch handle.

• #define AMD_DBGAPI_WORKGROUP_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_workgroup_id_t,
0)

The NULL workgroup handle.

• #define AMD_DBGAPI_WAVE_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_wave_id_t, 0)

The NULL wave handle.

• #define AMD_DBGAPI_DISPLACED_STEPPING_NONE (amd_dbgapi_displaced_stepping_id_t{ 0 })

The NULL displaced stepping handle.

• #define AMD_DBGAPI_WATCHPOINT_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_watchpoint_id_t,
0)

The NULL hardware data watchpoint handle.

• #define AMD_DBGAPI_REGISTER_CLASS_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_register_class_id_t,
0)

The NULL register class handle.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

176 File Documentation

• #define AMD_DBGAPI_REGISTER_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_register_id_t, 0)

The NULL register handle.

• #define AMD_DBGAPI_LANE_NONE ((amd_dbgapi_lane_id_t) (-1))

The NULL lane handle.

• #define AMD_DBGAPI_ADDRESS_CLASS_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_address_class_id_t,
0)

The NULL address class handle.

• #define AMD_DBGAPI_ADDRESS_SPACE_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_address_space_id_t,
0)

The NULL address space handle.

• #define AMD_DBGAPI_ADDRESS_SPACE_GLOBAL AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_address_space_id_t,
1)

The global address space handle.

• #define AMD_DBGAPI_EVENT_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_event_id_t, 0)

The NULL event handle.

• #define AMD_DBGAPI_BREAKPOINT_NONE AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_breakpoint_id_t,
0)

The NULL breakpoint handle.

Typedefs

• typedef struct amd_dbgapi_callbacks_s amd_dbgapi_callbacks_t

Forward declaration of callbacks used to specify services that must be provided by the client.

• typedef uint64_t amd_dbgapi_global_address_t

Integral type used for a global virtual memory address in the inferior process.

• typedef uint64_t amd_dbgapi_size_t

Integral type used for sizes, including memory allocations, in the inferior.

• typedef pid_t amd_dbgapi_os_process_id_t

Native operating system process ID.

• typedef int amd_dbgapi_notifier_t

Type used to notify the client of the library that a process may have pending events.

• typedef uint64_t amd_dbgapi_os_agent_id_t

Native operating system agent ID.

• typedef uint64_t amd_dbgapi_os_queue_id_t

Native operating system queue ID.

• typedef uint64_t amd_dbgapi_os_queue_packet_id_t

Native operating system queue packet ID.

• typedef struct amd_dbgapi_symbolizer_id_s ∗ amd_dbgapi_symbolizer_id_t

Opaque client symbolizer handle.

• typedef struct amd_dbgapi_client_process_s ∗ amd_dbgapi_client_process_id_t

Opaque client process handle.

• typedef uint32_t amd_dbgapi_lane_id_t

A wave lane handle.

• typedef uint64_t amd_dbgapi_segment_address_t

Each address space has its own linear address to access it termed a segment address.

• typedef struct amd_dbgapi_client_thread_s ∗ amd_dbgapi_client_thread_id_t

Opaque client thread handle.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

4.1 include/amd-dbgapi/amd-dbgapi.h File Reference 177

Enumerations

• enum amd_dbgapi_changed_t {
AMD_DBGAPI_CHANGED_NO = 0 ,
AMD_DBGAPI_CHANGED_YES = 1 }

Indication of if a value has changed.

• enum amd_dbgapi_os_queue_type_t {
AMD_DBGAPI_OS_QUEUE_TYPE_UNKNOWN = 0 ,
AMD_DBGAPI_OS_QUEUE_TYPE_HSA_AQL = 1 ,
AMD_DBGAPI_OS_QUEUE_TYPE_AMD_PM4 = 257 ,
AMD_DBGAPI_OS_QUEUE_TYPE_AMD_SDMA = 513 ,
AMD_DBGAPI_OS_QUEUE_TYPE_AMD_SDMA_XGMI = 514 }

Native operating system queue type.

• enum amd_dbgapi_status_t {
AMD_DBGAPI_STATUS_SUCCESS = 0 ,
AMD_DBGAPI_STATUS_ERROR = -1 ,
AMD_DBGAPI_STATUS_FATAL = -2 ,
AMD_DBGAPI_STATUS_ERROR_NOT_IMPLEMENTED = -3 ,
AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE = -4 ,
AMD_DBGAPI_STATUS_ERROR_NOT_SUPPORTED = -5 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT = -6 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITY = -7 ,
AMD_DBGAPI_STATUS_ERROR_ALREADY_INITIALIZED = -8 ,
AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED = -9 ,
AMD_DBGAPI_STATUS_ERROR_RESTRICTION = -10 ,
AMD_DBGAPI_STATUS_ERROR_ALREADY_ATTACHED = -11 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_ARCHITECTURE_ID = -12 ,
AMD_DBGAPI_STATUS_ERROR_ILLEGAL_INSTRUCTION = -13 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_CODE_OBJECT_ID = -14 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_ELF_AMDGPU_MACHINE = -15 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_ID = -16 ,
AMD_DBGAPI_STATUS_ERROR_PROCESS_EXITED = -17 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_AGENT_ID = -18 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_QUEUE_ID = -19 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_DISPATCH_ID = -20 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID = -21 ,
AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_STOPPED = -22 ,
AMD_DBGAPI_STATUS_ERROR_WAVE_STOPPED = -23 ,
AMD_DBGAPI_STATUS_ERROR_WAVE_OUTSTANDING_STOP = -24 ,
AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_RESUMABLE = -25 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_DISPLACED_STEPPING_ID = -26 ,
AMD_DBGAPI_STATUS_ERROR_DISPLACED_STEPPING_BUFFER_NOT_AVAILABLE = -27 ,
AMD_DBGAPI_STATUS_ERROR_DISPLACED_STEPPING_ACTIVE = -28 ,
AMD_DBGAPI_STATUS_ERROR_RESUME_DISPLACED_STEPPING = -29 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_WATCHPOINT_ID = -30 ,
AMD_DBGAPI_STATUS_ERROR_NO_WATCHPOINT_AVAILABLE = -31 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_REGISTER_CLASS_ID = -32 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_REGISTER_ID = -33 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_LANE_ID = -34 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_CLASS_ID = -35 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_SPACE_ID = -36 ,
AMD_DBGAPI_STATUS_ERROR_MEMORY_ACCESS = -37 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_SPACE_CONVERSION = -38 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_EVENT_ID = -39 ,

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

178 File Documentation

AMD_DBGAPI_STATUS_ERROR_INVALID_BREAKPOINT_ID = -40 ,
AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK = -41 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_CLIENT_PROCESS_ID = -42 ,
AMD_DBGAPI_STATUS_ERROR_SYMBOL_NOT_FOUND = -43 ,
AMD_DBGAPI_STATUS_ERROR_REGISTER_NOT_AVAILABLE = -44 ,
AMD_DBGAPI_STATUS_ERROR_INVALID_WORKGROUP_ID = -45 ,
AMD_DBGAPI_STATUS_ERROR_INCOMPATIBLE_PROCESS_STATE = -46 ,
AMD_DBGAPI_STATUS_ERROR_PROCESS_FROZEN = -47 ,
AMD_DBGAPI_STATUS_ERROR_PROCESS_ALREADY_FROZEN = -48 ,
AMD_DBGAPI_STATUS_ERROR_PROCESS_NOT_FROZEN = -49 }

AMD debugger API status codes.

• enum amd_dbgapi_architecture_info_t {
AMD_DBGAPI_ARCHITECTURE_INFO_NAME = 1 ,
AMD_DBGAPI_ARCHITECTURE_INFO_ELF_AMDGPU_MACHINE = 2 ,
AMD_DBGAPI_ARCHITECTURE_INFO_LARGEST_INSTRUCTION_SIZE = 3 ,
AMD_DBGAPI_ARCHITECTURE_INFO_MINIMUM_INSTRUCTION_ALIGNMENT = 4 ,
AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION_SIZE = 5 ,
AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION = 6 ,
AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION_PC_ADJUST = 7 ,
AMD_DBGAPI_ARCHITECTURE_INFO_PC_REGISTER = 8 }

Architecture queries that are supported by amd_dbgapi_architecture_get_info.

• enum amd_dbgapi_instruction_kind_t {
AMD_DBGAPI_INSTRUCTION_KIND_UNKNOWN = 0 ,
AMD_DBGAPI_INSTRUCTION_KIND_SEQUENTIAL = 1 ,
AMD_DBGAPI_INSTRUCTION_KIND_DIRECT_BRANCH = 2 ,
AMD_DBGAPI_INSTRUCTION_KIND_DIRECT_BRANCH_CONDITIONAL = 3 ,
AMD_DBGAPI_INSTRUCTION_KIND_INDIRECT_BRANCH_REGISTER_PAIR = 4 ,
AMD_DBGAPI_INSTRUCTION_KIND_INDIRECT_BRANCH_CONDITIONAL_REGISTER_PAIR = 5 ,
AMD_DBGAPI_INSTRUCTION_KIND_DIRECT_CALL_REGISTER_PAIR = 6 ,
AMD_DBGAPI_INSTRUCTION_KIND_INDIRECT_CALL_REGISTER_PAIRS = 7 ,
AMD_DBGAPI_INSTRUCTION_KIND_TERMINATE = 8 ,
AMD_DBGAPI_INSTRUCTION_KIND_TRAP = 9 ,
AMD_DBGAPI_INSTRUCTION_KIND_HALT = 10 ,
AMD_DBGAPI_INSTRUCTION_KIND_BARRIER = 11 ,
AMD_DBGAPI_INSTRUCTION_KIND_SLEEP = 12 ,
AMD_DBGAPI_INSTRUCTION_KIND_SPECIAL = 13 }

The kinds of instruction classifications.

• enum amd_dbgapi_instruction_properties_t { AMD_DBGAPI_INSTRUCTION_PROPERTY_NONE = 0 }

A bit mask of the properties of an instruction.

• enum amd_dbgapi_endianness_t {
AMD_DBGAPI_ENDIAN_BIG = 0 ,
AMD_DBGAPI_ENDIAN_LITTLE = 1 }

Byte endianness encoding.

• enum amd_dbgapi_process_info_t {
AMD_DBGAPI_PROCESS_INFO_NOTIFIER = 1 ,
AMD_DBGAPI_PROCESS_INFO_WATCHPOINT_COUNT = 2 ,
AMD_DBGAPI_PROCESS_INFO_WATCHPOINT_SHARE = 3 ,
AMD_DBGAPI_PROCESS_INFO_PRECISE_MEMORY_SUPPORTED = 4 ,
AMD_DBGAPI_PROCESS_INFO_PRECISE_ALU_EXCEPTIONS_SUPPORTED = 5 ,
AMD_DBGAPI_PROCESS_INFO_OS_ID = 6 ,
AMD_DBGAPI_PROCESS_INFO_CORE_STATE = 7 }

Process queries that are supported by amd_dbgapi_process_get_info.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

4.1 include/amd-dbgapi/amd-dbgapi.h File Reference 179

• enum amd_dbgapi_progress_t {
AMD_DBGAPI_PROGRESS_NORMAL = 0 ,
AMD_DBGAPI_PROGRESS_NO_FORWARD = 1 }

The kinds of progress supported by the library.

• enum amd_dbgapi_wave_creation_t {
AMD_DBGAPI_WAVE_CREATION_NORMAL = 0 ,
AMD_DBGAPI_WAVE_CREATION_STOP = 1 }

The kinds of wave creation supported by the hardware.

• enum amd_dbgapi_code_object_info_t {
AMD_DBGAPI_CODE_OBJECT_INFO_PROCESS = 1 ,
AMD_DBGAPI_CODE_OBJECT_INFO_URI_NAME = 2 ,
AMD_DBGAPI_CODE_OBJECT_INFO_LOAD_ADDRESS = 3 }

Code object queries that are supported by amd_dbgapi_code_object_get_info.

• enum amd_dbgapi_agent_info_t {
AMD_DBGAPI_AGENT_INFO_PROCESS = 1 ,
AMD_DBGAPI_AGENT_INFO_NAME = 2 ,
AMD_DBGAPI_AGENT_INFO_ARCHITECTURE = 3 ,
AMD_DBGAPI_AGENT_INFO_STATE = 4 ,
AMD_DBGAPI_AGENT_INFO_PCI_DOMAIN = 5 ,
AMD_DBGAPI_AGENT_INFO_PCI_SLOT = 6 ,
AMD_DBGAPI_AGENT_INFO_PCI_VENDOR_ID = 7 ,
AMD_DBGAPI_AGENT_INFO_PCI_DEVICE_ID = 8 ,
AMD_DBGAPI_AGENT_INFO_EXECUTION_UNIT_COUNT = 9 ,
AMD_DBGAPI_AGENT_INFO_MAX_WAVES_PER_EXECUTION_UNIT = 10 ,
AMD_DBGAPI_AGENT_INFO_OS_ID = 11 }

Agent queries that are supported by amd_dbgapi_agent_get_info.

• enum amd_dbgapi_agent_state_t {
AMD_DBGAPI_AGENT_STATE_SUPPORTED = 1 ,
AMD_DBGAPI_AGENT_STATE_NOT_SUPPORTED = 2 }

Agent state.

• enum amd_dbgapi_queue_info_t {
AMD_DBGAPI_QUEUE_INFO_AGENT = 1 ,
AMD_DBGAPI_QUEUE_INFO_PROCESS = 2 ,
AMD_DBGAPI_QUEUE_INFO_ARCHITECTURE = 3 ,
AMD_DBGAPI_QUEUE_INFO_TYPE = 4 ,
AMD_DBGAPI_QUEUE_INFO_STATE = 5 ,
AMD_DBGAPI_QUEUE_INFO_ERROR_REASON = 6 ,
AMD_DBGAPI_QUEUE_INFO_ADDRESS = 7 ,
AMD_DBGAPI_QUEUE_INFO_SIZE = 8 ,
AMD_DBGAPI_QUEUE_INFO_OS_ID = 9 }

Queue queries that are supported by amd_dbgapi_queue_get_info.

• enum amd_dbgapi_queue_state_t {
AMD_DBGAPI_QUEUE_STATE_VALID = 1 ,
AMD_DBGAPI_QUEUE_STATE_ERROR = 2 }

Queue state.

• enum amd_dbgapi_exceptions_t {
AMD_DBGAPI_EXCEPTION_NONE = 0 ,
AMD_DBGAPI_EXCEPTION_WAVE_ABORT = (1 << 0) ,
AMD_DBGAPI_EXCEPTION_WAVE_TRAP = (1 << 1) ,
AMD_DBGAPI_EXCEPTION_WAVE_MATH_ERROR = (1 << 2) ,
AMD_DBGAPI_EXCEPTION_WAVE_ILLEGAL_INSTRUCTION = (1 << 3) ,
AMD_DBGAPI_EXCEPTION_WAVE_MEMORY_VIOLATION = (1 << 4) ,

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

180 File Documentation

AMD_DBGAPI_EXCEPTION_WAVE_ADDRESS_ERROR = (1 << 5) ,
DEPRECATED = AMD_DBGAPI_EXCEPTION_WAVE_ADDRESS_ERROR ,
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_DIM_INVALID = (1 << 16) ,
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_GROUP_SEGMENT_SIZE_INVALID = (1 << 17) ,
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_CODE_INVALID = (1 << 18) ,
AMD_DBGAPI_EXCEPTION_PACKET_UNSUPPORTED = (1 << 20) ,
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_WORKGROUP_SIZE_INVALID = (1 << 21) ,
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_REGISTER_COUNT_TOO_LARGE = (1 << 22) ,
AMD_DBGAPI_EXCEPTION_PACKET_VENDOR_UNSUPPORTED = (1 << 23) ,
AMD_DBGAPI_EXCEPTION_QUEUE_PREEMPTION_ERROR = (1 << 31) }

A bit mask of the exceptions that can cause a queue to enter the queue error state.

• enum amd_dbgapi_dispatch_info_t {
AMD_DBGAPI_DISPATCH_INFO_QUEUE = 1 ,
AMD_DBGAPI_DISPATCH_INFO_AGENT = 2 ,
AMD_DBGAPI_DISPATCH_INFO_PROCESS = 3 ,
AMD_DBGAPI_DISPATCH_INFO_ARCHITECTURE = 4 ,
AMD_DBGAPI_DISPATCH_INFO_OS_QUEUE_PACKET_ID = 5 ,
AMD_DBGAPI_DISPATCH_INFO_BARRIER = 6 ,
AMD_DBGAPI_DISPATCH_INFO_ACQUIRE_FENCE = 7 ,
AMD_DBGAPI_DISPATCH_INFO_RELEASE_FENCE = 8 ,
AMD_DBGAPI_DISPATCH_INFO_GRID_DIMENSIONS = 9 ,
AMD_DBGAPI_DISPATCH_INFO_WORKGROUP_SIZES = 10 ,
AMD_DBGAPI_DISPATCH_INFO_GRID_SIZES = 11 ,
AMD_DBGAPI_DISPATCH_INFO_PRIVATE_SEGMENT_SIZE = 12 ,
AMD_DBGAPI_DISPATCH_INFO_GROUP_SEGMENT_SIZE = 13 ,
AMD_DBGAPI_DISPATCH_INFO_KERNEL_ARGUMENT_SEGMENT_ADDRESS = 14 ,
AMD_DBGAPI_DISPATCH_INFO_KERNEL_DESCRIPTOR_ADDRESS = 15 ,
AMD_DBGAPI_DISPATCH_INFO_KERNEL_CODE_ENTRY_ADDRESS = 16 ,
AMD_DBGAPI_DISPATCH_INFO_KERNEL_COMPLETION_ADDRESS = 17 }

Dispatch queries that are supported by amd_dbgapi_dispatch_get_info.

• enum amd_dbgapi_dispatch_barrier_t {
AMD_DBGAPI_DISPATCH_BARRIER_NONE = 0 ,
AMD_DBGAPI_DISPATCH_BARRIER_PRESENT = 1 }

Dispatch barrier.

• enum amd_dbgapi_dispatch_fence_scope_t {
AMD_DBGAPI_DISPATCH_FENCE_SCOPE_NONE = 0 ,
AMD_DBGAPI_DISPATCH_FENCE_SCOPE_AGENT = 1 ,
AMD_DBGAPI_DISPATCH_FENCE_SCOPE_SYSTEM = 2 }

Dispatch memory fence scope.

• enum amd_dbgapi_workgroup_info_t {
AMD_DBGAPI_WORKGROUP_INFO_DISPATCH = 1 ,
AMD_DBGAPI_WORKGROUP_INFO_QUEUE = 2 ,
AMD_DBGAPI_WORKGROUP_INFO_AGENT = 3 ,
AMD_DBGAPI_WORKGROUP_INFO_PROCESS = 4 ,
AMD_DBGAPI_WORKGROUP_INFO_ARCHITECTURE = 5 ,
AMD_DBGAPI_WORKGROUP_INFO_WORKGROUP_COORD = 6 }

Workgroup queries that are supported by amd_dbgapi_workgroup_get_info.

• enum amd_dbgapi_wave_info_t {
AMD_DBGAPI_WAVE_INFO_STATE = 1 ,
AMD_DBGAPI_WAVE_INFO_STOP_REASON = 2 ,
AMD_DBGAPI_WAVE_INFO_WATCHPOINTS = 3 ,
AMD_DBGAPI_WAVE_INFO_WORKGROUP = 4 ,
AMD_DBGAPI_WAVE_INFO_DISPATCH = 5 ,

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

4.1 include/amd-dbgapi/amd-dbgapi.h File Reference 181

AMD_DBGAPI_WAVE_INFO_QUEUE = 6 ,
AMD_DBGAPI_WAVE_INFO_AGENT = 7 ,
AMD_DBGAPI_WAVE_INFO_PROCESS = 8 ,
AMD_DBGAPI_WAVE_INFO_ARCHITECTURE = 9 ,
AMD_DBGAPI_WAVE_INFO_PC = 10 ,
AMD_DBGAPI_WAVE_INFO_EXEC_MASK = 11 ,
AMD_DBGAPI_WAVE_INFO_WORKGROUP_COORD = 12 ,
AMD_DBGAPI_WAVE_INFO_WAVE_NUMBER_IN_WORKGROUP = 13 ,
AMD_DBGAPI_WAVE_INFO_LANE_COUNT = 14 }

Wave queries that are supported by amd_dbgapi_wave_get_info.

• enum amd_dbgapi_wave_state_t {
AMD_DBGAPI_WAVE_STATE_RUN = 1 ,
AMD_DBGAPI_WAVE_STATE_SINGLE_STEP = 2 ,
AMD_DBGAPI_WAVE_STATE_STOP = 3 }

The execution state of a wave.

• enum amd_dbgapi_wave_stop_reasons_t {
AMD_DBGAPI_WAVE_STOP_REASON_NONE = 0 ,
AMD_DBGAPI_WAVE_STOP_REASON_BREAKPOINT = (1 << 0) ,
AMD_DBGAPI_WAVE_STOP_REASON_WATCHPOINT = (1 << 1) ,
AMD_DBGAPI_WAVE_STOP_REASON_SINGLE_STEP = (1 << 2) ,
AMD_DBGAPI_WAVE_STOP_REASON_FP_INPUT_DENORMAL = (1 << 3) ,
AMD_DBGAPI_WAVE_STOP_REASON_FP_DIVIDE_BY_0 = (1 << 4) ,
AMD_DBGAPI_WAVE_STOP_REASON_FP_OVERFLOW = (1 << 5) ,
AMD_DBGAPI_WAVE_STOP_REASON_FP_UNDERFLOW = (1 << 6) ,
AMD_DBGAPI_WAVE_STOP_REASON_FP_INEXACT = (1 << 7) ,
AMD_DBGAPI_WAVE_STOP_REASON_FP_INVALID_OPERATION = (1 << 8) ,
AMD_DBGAPI_WAVE_STOP_REASON_INT_DIVIDE_BY_0 = (1 << 9) ,
AMD_DBGAPI_WAVE_STOP_REASON_DEBUG_TRAP = (1 << 10) ,
AMD_DBGAPI_WAVE_STOP_REASON_ASSERT_TRAP = (1 << 11) ,
AMD_DBGAPI_WAVE_STOP_REASON_TRAP = (1 << 12) ,
AMD_DBGAPI_WAVE_STOP_REASON_MEMORY_VIOLATION = (1 << 13) ,
AMD_DBGAPI_WAVE_STOP_REASON_ADDRESS_ERROR = (1 << 14) ,
DEPRECATED = AMD_DBGAPI_EXCEPTION_WAVE_ADDRESS_ERROR ,
AMD_DBGAPI_WAVE_STOP_REASON_ILLEGAL_INSTRUCTION = (1 << 15) ,
AMD_DBGAPI_WAVE_STOP_REASON_ECC_ERROR = (1 << 16) ,
AMD_DBGAPI_WAVE_STOP_REASON_FATAL_HALT = (1 << 17) }

A bit mask of the reasons that a wave stopped.

• enum amd_dbgapi_resume_mode_t {
AMD_DBGAPI_RESUME_MODE_NORMAL = 0 ,
AMD_DBGAPI_RESUME_MODE_SINGLE_STEP = 1 }

The mode in which to resuming the execution of a wave.

• enum amd_dbgapi_displaced_stepping_info_t { AMD_DBGAPI_DISPLACED_STEPPING_INFO_PROCESS = 1
}

Displaced stepping queries that are supported by amd_dbgapi_displaced_stepping_id_t.

• enum amd_dbgapi_watchpoint_info_t {
AMD_DBGAPI_WATCHPOINT_INFO_PROCESS = 1 ,
AMD_DBGAPI_WATCHPOINT_INFO_ADDRESS = 2 ,
AMD_DBGAPI_WATCHPOINT_INFO_SIZE = 3 }

Watchpoint queries that are supported by amd_dbgapi_watchpoint_get_info.

• enum amd_dbgapi_watchpoint_share_kind_t {
AMD_DBGAPI_WATCHPOINT_SHARE_KIND_UNSUPPORTED = 0 ,
AMD_DBGAPI_WATCHPOINT_SHARE_KIND_UNSHARED = 1 ,
AMD_DBGAPI_WATCHPOINT_SHARE_KIND_SHARED = 2 }

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

182 File Documentation

The way watchpoints are shared between processes.

• enum amd_dbgapi_watchpoint_kind_t {
AMD_DBGAPI_WATCHPOINT_KIND_LOAD = 1 ,
AMD_DBGAPI_WATCHPOINT_KIND_STORE_AND_RMW = 2 ,
AMD_DBGAPI_WATCHPOINT_KIND_RMW = 3 ,
AMD_DBGAPI_WATCHPOINT_KIND_ALL = 4 }

Watchpoint memory access kinds.

• enum amd_dbgapi_register_class_info_t {
AMD_DBGAPI_REGISTER_CLASS_INFO_ARCHITECTURE = 1 ,
AMD_DBGAPI_REGISTER_CLASS_INFO_NAME = 2 }

Register class queries that are supported by amd_dbgapi_architecture_register_class_get_info.

• enum amd_dbgapi_register_properties_t {
AMD_DBGAPI_REGISTER_PROPERTY_NONE = 0 ,
AMD_DBGAPI_REGISTER_PROPERTY_READONLY_BITS = (1 << 0) ,
AMD_DBGAPI_REGISTER_PROPERTY_VOLATILE = (1 << 1) ,
AMD_DBGAPI_REGISTER_PROPERTY_INVALIDATE_VOLATILE = (1 << 2) }

A bit mask on register properties.

• enum amd_dbgapi_register_info_t {
AMD_DBGAPI_REGISTER_INFO_ARCHITECTURE = 1 ,
AMD_DBGAPI_REGISTER_INFO_NAME = 2 ,
AMD_DBGAPI_REGISTER_INFO_SIZE = 3 ,
AMD_DBGAPI_REGISTER_INFO_TYPE = 4 ,
AMD_DBGAPI_REGISTER_INFO_DWARF = 5 ,
AMD_DBGAPI_REGISTER_INFO_PROPERTIES = 6 }

Register queries that are supported by amd_dbgapi_register_get_info.

• enum amd_dbgapi_register_exists_t {
AMD_DBGAPI_REGISTER_ABSENT = 0 ,
AMD_DBGAPI_REGISTER_PRESENT = 1 }

Indication of if a wave has a register.

• enum amd_dbgapi_register_class_state_t {
AMD_DBGAPI_REGISTER_CLASS_STATE_NOT_MEMBER = 0 ,
AMD_DBGAPI_REGISTER_CLASS_STATE_MEMBER = 1 }

Indication of whether a register is a member of a register class.

• enum amd_dbgapi_address_class_info_t {
AMD_DBGAPI_ADDRESS_CLASS_INFO_NAME = 1 ,
AMD_DBGAPI_ADDRESS_CLASS_INFO_ADDRESS_SPACE = 2 ,
AMD_DBGAPI_ADDRESS_CLASS_INFO_DWARF = 3 }

Source language address class queries that are supported by amd_dbgapi_address_class_get_info.

• enum amd_dbgapi_address_space_access_t {
AMD_DBGAPI_ADDRESS_SPACE_ACCESS_ALL = 1 ,
AMD_DBGAPI_ADDRESS_SPACE_ACCESS_PROGRAM_CONSTANT = 2 ,
AMD_DBGAPI_ADDRESS_SPACE_ACCESS_DISPATCH_CONSTANT = 3 }

Indication of how the address space is accessed.

• enum amd_dbgapi_address_space_info_t {
AMD_DBGAPI_ADDRESS_SPACE_INFO_NAME = 1 ,
AMD_DBGAPI_ADDRESS_SPACE_INFO_ADDRESS_SIZE = 2 ,
AMD_DBGAPI_ADDRESS_SPACE_INFO_NULL_ADDRESS = 3 ,
AMD_DBGAPI_ADDRESS_SPACE_INFO_ACCESS = 4 ,
AMD_DBGAPI_ADDRESS_SPACE_INFO_DWARF = 5 }

Address space queries that are supported by amd_dbgapi_address_space_get_info.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

4.1 include/amd-dbgapi/amd-dbgapi.h File Reference 183

• enum amd_dbgapi_segment_address_dependency_t {
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_NONE = 0 ,
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_LANE = 1 ,
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_WAVE = 2 ,
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_WORKGROUP = 3 ,
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_AGENT = 4 ,
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_PROCESS = 5 }

The dependency when reading or writing a specific segment address of an address space using the amd_dbgapi_read_memory
and amd_dbgapi_write_memory operations.

• enum amd_dbgapi_address_class_state_t {
AMD_DBGAPI_ADDRESS_CLASS_STATE_NOT_MEMBER = 0 ,
AMD_DBGAPI_ADDRESS_CLASS_STATE_MEMBER = 1 }

Indication of whether a segment address in an address space is a member of an source language address class.

• enum amd_dbgapi_memory_precision_t {
AMD_DBGAPI_MEMORY_PRECISION_NONE = 0 ,
AMD_DBGAPI_MEMORY_PRECISION_PRECISE = 1 }

Memory access precision.

• enum amd_dbgapi_alu_exceptions_precision_t {
AMD_DBGAPI_ALU_EXCEPTIONS_PRECISION_NONE = 0 ,
AMD_DBGAPI_ALU_EXCEPTIONS_PRECISION_PRECISE = 1 }

ALU exceptions reporting precision.

• enum amd_dbgapi_event_kind_t {
AMD_DBGAPI_EVENT_KIND_NONE = 0 ,
AMD_DBGAPI_EVENT_KIND_WAVE_STOP = 1 ,
AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED = 2 ,
AMD_DBGAPI_EVENT_KIND_CODE_OBJECT_LIST_UPDATED = 3 ,
AMD_DBGAPI_EVENT_KIND_BREAKPOINT_RESUME = 4 ,
AMD_DBGAPI_EVENT_KIND_RUNTIME = 5 ,
AMD_DBGAPI_EVENT_KIND_QUEUE_ERROR = 6 }

The event kinds.

• enum amd_dbgapi_runtime_state_t {
AMD_DBGAPI_RUNTIME_STATE_LOADED_SUCCESS = 1 ,
AMD_DBGAPI_RUNTIME_STATE_UNLOADED = 2 ,
AMD_DBGAPI_RUNTIME_STATE_LOADED_ERROR_RESTRICTION = 3 }

Inferior's runtime state.

• enum amd_dbgapi_event_info_t {
AMD_DBGAPI_EVENT_INFO_PROCESS = 1 ,
AMD_DBGAPI_EVENT_INFO_KIND = 2 ,
AMD_DBGAPI_EVENT_INFO_WAVE = 3 ,
AMD_DBGAPI_EVENT_INFO_BREAKPOINT = 4 ,
AMD_DBGAPI_EVENT_INFO_CLIENT_THREAD = 5 ,
AMD_DBGAPI_EVENT_INFO_RUNTIME_STATE = 6 ,
AMD_DBGAPI_EVENT_INFO_QUEUE = 7 }

Event queries that are supported by amd_dbgapi_event_get_info.

• enum amd_dbgapi_log_level_t {
AMD_DBGAPI_LOG_LEVEL_NONE = 0 ,
AMD_DBGAPI_LOG_LEVEL_FATAL_ERROR = 1 ,
AMD_DBGAPI_LOG_LEVEL_WARNING = 2 ,
AMD_DBGAPI_LOG_LEVEL_INFO = 3 ,
AMD_DBGAPI_LOG_LEVEL_TRACE = 4 ,
AMD_DBGAPI_LOG_LEVEL_VERBOSE = 5 }

The logging levels supported.

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

184 File Documentation

• enum amd_dbgapi_breakpoint_info_t { AMD_DBGAPI_BREAKPOINT_INFO_PROCESS = 1 }

Breakpoint queries that are supported by amd_dbgapi_breakpoint_get_info.

• enum amd_dbgapi_breakpoint_action_t {
AMD_DBGAPI_BREAKPOINT_ACTION_RESUME = 1 ,
AMD_DBGAPI_BREAKPOINT_ACTION_HALT = 2 }

The action to perform after reporting a breakpoint has been hit.

• enum amd_dbgapi_client_process_info_t {
AMD_DBGAPI_CLIENT_PROCESS_INFO_OS_PID = 1 ,
AMD_DBGAPI_CLIENT_PROCESS_INFO_CORE_STATE = 2 }

Client queries that are supported by the client_process_get_info callback.

Functions

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_get_status_string (amd_dbgapi_status_t status, const char
∗∗status_string) AMD_DBGAPI_VERSION_0_54

Query a textual description of a status code.

• void AMD_DBGAPI amd_dbgapi_get_version (uint32_t ∗major, uint32_t ∗minor, uint32_t ∗patch) AMD_DBGAPI_VERSION_0_54

Query the version of the installed library.

• const char AMD_DBGAPI ∗ amd_dbgapi_get_build_name (void) AMD_DBGAPI_VERSION_0_54

Query the installed library build name.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_initialize (amd_dbgapi_callbacks_t ∗callbacks) AMD_DBGAPI_VERSION_0_76

Initialize the library.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_finalize (void) AMD_DBGAPI_VERSION_0_54

Finalize the library.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_get_info (amd_dbgapi_architecture_id_t
architecture_id, amd_dbgapi_architecture_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_54

Query information about an architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_get_architecture (uint32_t elf_amdgpu_machine, amd_dbgapi_architecture_id_t
∗architecture_id) AMD_DBGAPI_VERSION_0_54

Get an architecture from the AMD GPU ELF EF_AMDGPU_MACH value corresponding to the architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_disassemble_instruction (amd_dbgapi_architecture_id_t
architecture_id, amd_dbgapi_global_address_t address, amd_dbgapi_size_t ∗size, const void ∗memory, char
∗∗instruction_text, amd_dbgapi_symbolizer_id_t symbolizer_id, amd_dbgapi_status_t(∗symbolizer)(amd_dbgapi_symbolizer_id_t
symbolizer_id, amd_dbgapi_global_address_t address, char ∗∗symbol_text)) AMD_DBGAPI_VERSION_0_54

Disassemble a single instruction.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_classify_instruction (amd_dbgapi_architecture_id_t architecture←↩

_id, amd_dbgapi_global_address_t address, amd_dbgapi_size_t ∗size, const void ∗memory, amd_dbgapi_instruction_kind_t
∗instruction_kind, amd_dbgapi_instruction_properties_t ∗instruction_properties, void ∗∗instruction_information)
AMD_DBGAPI_VERSION_0_58

Classify a single instruction.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_get_info (amd_dbgapi_process_id_t process_id,
amd_dbgapi_process_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_77

Query information about a process.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_attach (amd_dbgapi_client_process_id_t client_←↩

process_id, amd_dbgapi_process_id_t ∗process_id) AMD_DBGAPI_VERSION_0_56

Attach to a process in order to provide debug control of the AMD GPUs it uses.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_detach (amd_dbgapi_process_id_t process_id)
AMD_DBGAPI_VERSION_0_54

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

4.1 include/amd-dbgapi/amd-dbgapi.h File Reference 185

Detach from a process and no longer have debug control of the AMD GPU devices it uses.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_set_progress (amd_dbgapi_process_id_t process←↩

_id, amd_dbgapi_progress_t progress) AMD_DBGAPI_VERSION_0_76

Set the progress required for a process.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_set_wave_creation (amd_dbgapi_process_id_t
process_id, amd_dbgapi_wave_creation_t creation) AMD_DBGAPI_VERSION_0_76

Set the wave creation mode for a process.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_freeze (amd_dbgapi_process_id_t process_id)
AMD_DBGAPI_VERSION_0_76

Freeze the process identified by process_id.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_unfreeze (amd_dbgapi_process_id_t process_id)
AMD_DBGAPI_VERSION_0_76

Unfreeze the process identified by process_id.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_code_object_get_info (amd_dbgapi_code_object_id_t code←↩

_object_id, amd_dbgapi_code_object_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_54

Query information about a code object.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_code_object_list (amd_dbgapi_process_id_t
process_id, size_t ∗code_object_count, amd_dbgapi_code_object_id_t ∗∗code_objects, amd_dbgapi_changed_t
∗changed) AMD_DBGAPI_VERSION_0_54

Return the list of loaded code objects.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_agent_get_info (amd_dbgapi_agent_id_t agent_id, amd_dbgapi_agent_info_t
query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_67

Query information about an agent.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_agent_list (amd_dbgapi_process_id_t process_id,
size_t ∗agent_count, amd_dbgapi_agent_id_t ∗∗agents, amd_dbgapi_changed_t ∗changed) AMD_DBGAPI_VERSION_0_54

Return the list of agents.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_queue_get_info (amd_dbgapi_queue_id_t queue_id,
amd_dbgapi_queue_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_68

Query information about a queue.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_queue_list (amd_dbgapi_process_id_t process_id,
size_t ∗queue_count, amd_dbgapi_queue_id_t ∗∗queues, amd_dbgapi_changed_t ∗changed) AMD_DBGAPI_VERSION_0_54

Return the list of queues.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_queue_packet_list (amd_dbgapi_queue_id_t queue_id,
amd_dbgapi_os_queue_packet_id_t ∗read_packet_id, amd_dbgapi_os_queue_packet_id_t ∗write_packet_id,
size_t ∗packets_byte_size, void ∗∗packets_bytes) AMD_DBGAPI_VERSION_0_54

Return the packets for a queue.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_dispatch_get_info (amd_dbgapi_dispatch_id_t dispatch_id,
amd_dbgapi_dispatch_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_54

Query information about a dispatch.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_dispatch_list (amd_dbgapi_process_id_t process←↩

_id, size_t ∗dispatch_count, amd_dbgapi_dispatch_id_t ∗∗dispatches, amd_dbgapi_changed_t ∗changed)
AMD_DBGAPI_VERSION_0_54

Return the list of dispatches.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_workgroup_get_info (amd_dbgapi_workgroup_id_t workgroup←↩

_id, amd_dbgapi_workgroup_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_64

Query information about a workgroup.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_workgroup_list (amd_dbgapi_process_id_t
process_id, size_t ∗workgroup_count, amd_dbgapi_workgroup_id_t ∗∗workgroups, amd_dbgapi_changed_t
∗changed) AMD_DBGAPI_VERSION_0_64

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

186 File Documentation

Return the list of existing workgroups.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_wave_get_info (amd_dbgapi_wave_id_t wave_id, amd_dbgapi_wave_info_t
query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_64

Query information about a wave.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_wave_list (amd_dbgapi_process_id_t process_id,
size_t ∗wave_count, amd_dbgapi_wave_id_t ∗∗waves, amd_dbgapi_changed_t ∗changed) AMD_DBGAPI_VERSION_0_54

Return the list of existing waves.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_wave_stop (amd_dbgapi_wave_id_t wave_id) AMD_DBGAPI_VERSION_0_76

Request a wave to stop executing.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_wave_resume (amd_dbgapi_wave_id_t wave_id, amd_dbgapi_resume_mode_t
resume_mode, amd_dbgapi_exceptions_t exceptions) AMD_DBGAPI_VERSION_0_76

Resume execution of a stopped wave.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_displaced_stepping_get_info (amd_dbgapi_displaced_stepping_id_t
displaced_stepping_id, amd_dbgapi_displaced_stepping_info_t query, size_t value_size, void ∗value)
AMD_DBGAPI_VERSION_0_54

Query information about a displaced stepping buffer.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_displaced_stepping_start (amd_dbgapi_wave_id_t wave←↩

_id, const void ∗saved_instruction_bytes, amd_dbgapi_displaced_stepping_id_t ∗displaced_stepping)
AMD_DBGAPI_VERSION_0_76

Associate an active displaced stepping buffer with a wave.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_displaced_stepping_complete (amd_dbgapi_wave_id_t
wave_id, amd_dbgapi_displaced_stepping_id_t displaced_stepping) AMD_DBGAPI_VERSION_0_76

Complete a displaced stepping buffer for a wave.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_watchpoint_get_info (amd_dbgapi_watchpoint_id_t watchpoint←↩

_id, amd_dbgapi_watchpoint_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_54

Query information about a watchpoint.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_set_watchpoint (amd_dbgapi_process_id_t process_←↩

id, amd_dbgapi_global_address_t address, amd_dbgapi_size_t size, amd_dbgapi_watchpoint_kind_t kind,
amd_dbgapi_watchpoint_id_t ∗watchpoint_id) AMD_DBGAPI_VERSION_0_76

Set a hardware data watchpoint.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_remove_watchpoint (amd_dbgapi_watchpoint_id_t watchpoint←↩

_id) AMD_DBGAPI_VERSION_0_76

Remove a hardware data watchpoint previously set by amd_dbgapi_set_watchpoint.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_register_class_get_info (amd_dbgapi_register_class_id_t
register_class_id, amd_dbgapi_register_class_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_54

Query information about a register class of an architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_register_class_list (amd_dbgapi_architecture_id_t
architecture_id, size_t ∗register_class_count, amd_dbgapi_register_class_id_t ∗∗register_classes) AMD_DBGAPI_VERSION_0_54

Report the list of register classes supported by the architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_register_get_info (amd_dbgapi_register_id_t register_id,
amd_dbgapi_register_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_70

Query information about a register.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_wave_register_exists (amd_dbgapi_wave_id_t wave_id,
amd_dbgapi_register_id_t register_id, amd_dbgapi_register_exists_t ∗exists) AMD_DBGAPI_VERSION_0_54

Query if a register exists for a wave.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_register_list (amd_dbgapi_architecture_id_t
architecture_id, size_t ∗register_count, amd_dbgapi_register_id_t ∗∗registers) AMD_DBGAPI_VERSION_0_54

Report the list of registers supported by the architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_wave_register_list (amd_dbgapi_wave_id_t wave_id, size_←↩

t ∗register_count, amd_dbgapi_register_id_t ∗∗registers) AMD_DBGAPI_VERSION_0_54

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

4.1 include/amd-dbgapi/amd-dbgapi.h File Reference 187

Report the list of registers supported by a wave.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_dwarf_register_to_register (amd_dbgapi_architecture_id_t
architecture_id, uint64_t dwarf_register, amd_dbgapi_register_id_t ∗register_id) AMD_DBGAPI_VERSION_0_54

Return a register handle from an AMD GPU DWARF register number for an architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_register_is_in_register_class (amd_dbgapi_register_class_id_t
register_class_id, amd_dbgapi_register_id_t register_id, amd_dbgapi_register_class_state_t ∗register_class_←↩

state) AMD_DBGAPI_VERSION_0_54

Determine if a register is a member of a register class.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_read_register (amd_dbgapi_wave_id_t wave_id, amd_dbgapi_register_id_t
register_id, amd_dbgapi_size_t offset, amd_dbgapi_size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_62

Read a register.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_write_register (amd_dbgapi_wave_id_t wave_id, amd_dbgapi_register_id_t
register_id, amd_dbgapi_size_t offset, amd_dbgapi_size_t value_size, const void ∗value) AMD_DBGAPI_VERSION_0_76

Write a register.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_prefetch_register (amd_dbgapi_wave_id_t wave_id,
amd_dbgapi_register_id_t register_id, amd_dbgapi_size_t register_count) AMD_DBGAPI_VERSION_0_62

Prefetch register values.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_address_class_get_info (amd_dbgapi_address_class_id_t
address_class_id, amd_dbgapi_address_class_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_62

Query information about a source language address class of an architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_address_class_list (amd_dbgapi_architecture_id_t
architecture_id, size_t ∗address_class_count, amd_dbgapi_address_class_id_t ∗∗address_classes) AMD_DBGAPI_VERSION_0_54

Report the list of source language address classes supported by the architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_dwarf_address_class_to_address_class (amd_dbgapi_architecture_id_t
architecture_id, uint64_t dwarf_address_class, amd_dbgapi_address_class_id_t ∗address_class_id) AMD_DBGAPI_VERSION_0_54

Return the architecture source language address class from a DWARF address class number for an architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_address_space_get_info (amd_dbgapi_address_space_id_t
address_space_id, amd_dbgapi_address_space_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_62

Query information about an address space.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_address_space_list (amd_dbgapi_architecture_id_t
architecture_id, size_t ∗address_space_count, amd_dbgapi_address_space_id_t ∗∗address_spaces) AMD_DBGAPI_VERSION_0_54

Report the list of address spaces supported by the architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_dwarf_address_space_to_address_space (amd_dbgapi_architecture_id_t
architecture_id, uint64_t dwarf_address_space, amd_dbgapi_address_space_id_t ∗address_space_id)
AMD_DBGAPI_VERSION_0_54

Return the address space from an AMD GPU DWARF address space number for an architecture.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_convert_address_space (amd_dbgapi_wave_id_t wave_id,
amd_dbgapi_lane_id_t lane_id, amd_dbgapi_address_space_id_t source_address_space_id, amd_dbgapi_segment_address_t
source_segment_address, amd_dbgapi_address_space_id_t destination_address_space_id, amd_dbgapi_segment_address_t
∗destination_segment_address, amd_dbgapi_size_t ∗destination_contiguous_bytes) AMD_DBGAPI_VERSION_0_62

Convert a source segment address in the source address space into a destination segment address in the destination
address space.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_address_dependency (amd_dbgapi_address_space_id_t
address_space_id, amd_dbgapi_segment_address_t segment_address, amd_dbgapi_segment_address_dependency_t
∗segment_address_dependency) AMD_DBGAPI_VERSION_0_64

Determine the dependency of a segment address value in a particular address space.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_address_is_in_address_class (amd_dbgapi_wave_id_t
wave_id, amd_dbgapi_lane_id_t lane_id, amd_dbgapi_address_space_id_t address_space_id, amd_dbgapi_segment_address_t
segment_address, amd_dbgapi_address_class_id_t address_class_id, amd_dbgapi_address_class_state_t
∗address_class_state) AMD_DBGAPI_VERSION_0_54

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

188 File Documentation

Determine if a segment address in an address space is a member of a source language address class.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_read_memory (amd_dbgapi_process_id_t process_id,
amd_dbgapi_wave_id_t wave_id, amd_dbgapi_lane_id_t lane_id, amd_dbgapi_address_space_id_t address←↩

_space_id, amd_dbgapi_segment_address_t segment_address, amd_dbgapi_size_t ∗value_size, void ∗value)
AMD_DBGAPI_VERSION_0_54

Read memory.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_write_memory (amd_dbgapi_process_id_t process_id,
amd_dbgapi_wave_id_t wave_id, amd_dbgapi_lane_id_t lane_id, amd_dbgapi_address_space_id_t address←↩

_space_id, amd_dbgapi_segment_address_t segment_address, amd_dbgapi_size_t ∗value_size, const void
∗value) AMD_DBGAPI_VERSION_0_76

Write memory.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_set_memory_precision (amd_dbgapi_process_id_t process←↩

_id, amd_dbgapi_memory_precision_t memory_precision) AMD_DBGAPI_VERSION_0_54

Control precision of memory access reporting.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_set_alu_exceptions_precision (amd_dbgapi_process_id_t
process_id, amd_dbgapi_alu_exceptions_precision_t alu_exceptions_precision) AMD_DBGAPI_VERSION_0_77

Control precision of ALU exceptions reporting.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_next_pending_event (amd_dbgapi_process_id_t
process_id, amd_dbgapi_event_id_t ∗event_id, amd_dbgapi_event_kind_t ∗kind) AMD_DBGAPI_VERSION_0_54

Obtain the next pending event.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_event_get_info (amd_dbgapi_event_id_t event_id, amd_dbgapi_event_info_t
query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_54

Query information about an event.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_event_processed (amd_dbgapi_event_id_t event_id)
AMD_DBGAPI_VERSION_0_54

Report that an event has been processed.

• void AMD_DBGAPI amd_dbgapi_set_log_level (amd_dbgapi_log_level_t level) AMD_DBGAPI_VERSION_0_54

Set the logging level.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_breakpoint_get_info (amd_dbgapi_breakpoint_id_t breakpoint←↩

_id, amd_dbgapi_breakpoint_info_t query, size_t value_size, void ∗value) AMD_DBGAPI_VERSION_0_54

Query information about a breakpoint.

• amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_report_breakpoint_hit (amd_dbgapi_breakpoint_id_t
breakpoint_id, amd_dbgapi_client_thread_id_t client_thread_id, amd_dbgapi_breakpoint_action_t ∗breakpoint←↩

_action) AMD_DBGAPI_VERSION_0_54

Report that a breakpoint inserted by the amd_dbgapi_callbacks_s::insert_breakpoint callback has been hit.

4.1.1 Detailed Description

AMD debugger API interface.

4.1.2 Macro Definition Documentation

4.1.2.1 AMD_DBGAPI

#define AMD_DBGAPI AMD_DBGAPI_IMPORT

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

4.2 amd-dbgapi.h 189

4.1.2.2 AMD_DBGAPI_CALL

#define AMD_DBGAPI_CALL

4.1.2.3 AMD_DBGAPI_EXPORT

#define AMD_DBGAPI_EXPORT AMD_DBGAPI_EXPORT_DECORATOR AMD_DBGAPI_CALL

4.1.2.4 AMD_DBGAPI_HANDLE_LITERAL

#define AMD_DBGAPI_HANDLE_LITERAL(

type,

value) {value}

4.1.2.5 AMD_DBGAPI_IMPORT

#define AMD_DBGAPI_IMPORT AMD_DBGAPI_IMPORT_DECORATOR AMD_DBGAPI_CALL

4.1.2.6 DEPRECATED

DEPRECATED = AMD_DBGAPI_WAVE_STOP_REASON_ADDRESS_ERROR

Old deprecated name kept for backward compatibility.

Will be removed in a future release.

4.2 amd-dbgapi.h

Go to the documentation of this file.
00001 /* Copyright (c) 2019-2024 Advanced Micro Devices, Inc.
00002
00003 Permission is hereby granted, free of charge, to any person obtaining a copy
00004 of this software and associated documentation files (the "Software"), to deal
00005 in the Software without restriction, including without limitation the rights
00006 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
00007 copies of the Software, and to permit persons to whom the Software is
00008 furnished to do so, subject to the following conditions:
00009
00010 The above copyright notice and this permission notice shall be included in
00011 all copies or substantial portions of the Software.
00012
00013 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
00014 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
00015 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
00016 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
00017 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
00018 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
00019 THE SOFTWARE. */
00020
00475 #ifndef AMD_DBGAPI_H
00476 #define AMD_DBGAPI_H 1
00477

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

190 File Documentation

00478 /* Placeholder for calling convention and import/export macros */
00479 #if !defined(AMD_DBGAPI_CALL)
00480 #define AMD_DBGAPI_CALL
00481 #endif /* !defined (AMD_DBGAPI_CALL) */
00482
00483 #if !defined(AMD_DBGAPI_EXPORT_DECORATOR)
00484 #if defined(__GNUC__)
00485 #define AMD_DBGAPI_EXPORT_DECORATOR __attribute__ ((visibility ("default")))
00486 #elif defined(_MSC_VER)
00487 #define AMD_DBGAPI_EXPORT_DECORATOR __declspec(dllexport)
00488 #endif /* defined (_MSC_VER) */
00489 #endif /* !defined (AMD_DBGAPI_EXPORT_DECORATOR) */
00490
00491 #if !defined(AMD_DBGAPI_IMPORT_DECORATOR)
00492 #if defined(__GNUC__)
00493 #define AMD_DBGAPI_IMPORT_DECORATOR
00494 #elif defined(_MSC_VER)
00495 #define AMD_DBGAPI_IMPORT_DECORATOR __declspec(dllimport)
00496 #endif /* defined (_MSC_VER) */
00497 #endif /* !defined (AMD_DBGAPI_IMPORT_DECORATOR) */
00498
00499 #define AMD_DBGAPI_EXPORT AMD_DBGAPI_EXPORT_DECORATOR AMD_DBGAPI_CALL
00500 #define AMD_DBGAPI_IMPORT AMD_DBGAPI_IMPORT_DECORATOR AMD_DBGAPI_CALL
00501
00502 #if !defined(AMD_DBGAPI)
00503 #if defined(AMD_DBGAPI_EXPORTS)
00504 #define AMD_DBGAPI AMD_DBGAPI_EXPORT
00505 #else /* !defined (AMD_DBGAPI_EXPORTS) */
00506 #define AMD_DBGAPI AMD_DBGAPI_IMPORT
00507 #endif /* !defined (AMD_DBGAPI_EXPORTS) */
00508 #endif /* !defined (AMD_DBGAPI) */
00509
00510 #if __cplusplus >= 201103L
00511 /* c++11 allows extended initializer lists. */
00512 #define AMD_DBGAPI_HANDLE_LITERAL(type, value) (type{ value })
00513 #elif __STDC_VERSION__ >= 199901L
00514 /* c99 allows compound literals. */
00515 #define AMD_DBGAPI_HANDLE_LITERAL(type, value) ((type){ value })
00516 #else /* !__STDC_VERSION__ >= 199901L */
00517 #define AMD_DBGAPI_HANDLE_LITERAL(type, value) {value}
00518 #endif /* !__STDC_VERSION__ >= 199901L */
00519
00520 #if defined(__cplusplus) && __cplusplus >= 201402L
00521 #define DEPRECATED [[deprecated]]
00522 #else
00523 #define DEPRECATED
00524 #endif
00525
00526 #if defined(__cplusplus)
00527 extern "C" {
00528 #endif /* defined (__cplusplus) */
00529
00530 #if defined(__linux__)
00531 #include <sys/types.h>
00532 #endif /* __linux__ */
00533
00534 #include <stddef.h>
00535 #include <stdint.h>
00536
00556 #define AMD_DBGAPI_VERSION_0_54
00557
00562 #define AMD_DBGAPI_VERSION_0_56
00563
00568 #define AMD_DBGAPI_VERSION_0_58
00569
00574 #define AMD_DBGAPI_VERSION_0_62
00575
00580 #define AMD_DBGAPI_VERSION_0_64
00581
00586 #define AMD_DBGAPI_VERSION_0_67
00587
00592 #define AMD_DBGAPI_VERSION_0_68
00593
00598 #define AMD_DBGAPI_VERSION_0_70
00599
00604 #define AMD_DBGAPI_VERSION_0_76
00605
00610 #define AMD_DBGAPI_VERSION_0_77
00611
00618 typedef struct amd_dbgapi_callbacks_s amd_dbgapi_callbacks_t;
00619

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

4.2 amd-dbgapi.h 191

00642 typedef uint64_t amd_dbgapi_global_address_t;
00643
00647 typedef uint64_t amd_dbgapi_size_t;
00648
00652 typedef enum
00653 {
00657 AMD_DBGAPI_CHANGED_NO = 0,
00661 AMD_DBGAPI_CHANGED_YES = 1
00662 } amd_dbgapi_changed_t;
00663
00671 #if defined(__linux__)
00672 typedef pid_t amd_dbgapi_os_process_id_t;
00673 #endif /* __linux__ */
00674
00699 #if defined(__linux__)
00700 typedef int amd_dbgapi_notifier_t;
00701 #endif /* __linux__ */
00702
00710 #if defined(__linux__)
00711 typedef uint64_t amd_dbgapi_os_agent_id_t;
00712 #endif /* __linux__ */
00713
00720 #if defined(__linux__)
00721 typedef uint64_t amd_dbgapi_os_queue_id_t;
00722 #endif /* __linux__ */
00723
00732 #if defined(__linux__)
00733 typedef uint64_t amd_dbgapi_os_queue_packet_id_t;
00734 #endif /* __linux__ */
00735
00743 #if defined(__linux__)
00744 typedef enum
00745 {
00749 AMD_DBGAPI_OS_QUEUE_TYPE_UNKNOWN = 0,
00753 AMD_DBGAPI_OS_QUEUE_TYPE_HSA_AQL = 1,
00757 AMD_DBGAPI_OS_QUEUE_TYPE_AMD_PM4 = 257,
00761 AMD_DBGAPI_OS_QUEUE_TYPE_AMD_SDMA = 513,
00765 AMD_DBGAPI_OS_QUEUE_TYPE_AMD_SDMA_XGMI = 514
00766 } amd_dbgapi_os_queue_type_t;
00767 #endif /* __linux__ */
00768
00781 typedef enum
00782 {
00786 AMD_DBGAPI_STATUS_SUCCESS = 0,
00790 AMD_DBGAPI_STATUS_ERROR = -1,
00812 AMD_DBGAPI_STATUS_FATAL = -2,
00818 AMD_DBGAPI_STATUS_ERROR_NOT_IMPLEMENTED = -3,
00822 AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE = -4,
00826 AMD_DBGAPI_STATUS_ERROR_NOT_SUPPORTED = -5,
00830 AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT = -6,
00834 AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITY = -7,
00838 AMD_DBGAPI_STATUS_ERROR_ALREADY_INITIALIZED = -8,
00842 AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED = -9,
00862 AMD_DBGAPI_STATUS_ERROR_RESTRICTION = -10,
00866 AMD_DBGAPI_STATUS_ERROR_ALREADY_ATTACHED = -11,
00870 AMD_DBGAPI_STATUS_ERROR_INVALID_ARCHITECTURE_ID = -12,
00874 AMD_DBGAPI_STATUS_ERROR_ILLEGAL_INSTRUCTION = -13,
00878 AMD_DBGAPI_STATUS_ERROR_INVALID_CODE_OBJECT_ID = -14,
00882 AMD_DBGAPI_STATUS_ERROR_INVALID_ELF_AMDGPU_MACHINE = -15,
00886 AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_ID = -16,
00891 AMD_DBGAPI_STATUS_ERROR_PROCESS_EXITED = -17,
00895 AMD_DBGAPI_STATUS_ERROR_INVALID_AGENT_ID = -18,
00899 AMD_DBGAPI_STATUS_ERROR_INVALID_QUEUE_ID = -19,
00903 AMD_DBGAPI_STATUS_ERROR_INVALID_DISPATCH_ID = -20,
00907 AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID = -21,
00911 AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_STOPPED = -22,
00915 AMD_DBGAPI_STATUS_ERROR_WAVE_STOPPED = -23,
00919 AMD_DBGAPI_STATUS_ERROR_WAVE_OUTSTANDING_STOP = -24,
00923 AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_RESUMABLE = -25,
00927 AMD_DBGAPI_STATUS_ERROR_INVALID_DISPLACED_STEPPING_ID = -26,
00932 AMD_DBGAPI_STATUS_ERROR_DISPLACED_STEPPING_BUFFER_NOT_AVAILABLE = -27,
00936 AMD_DBGAPI_STATUS_ERROR_DISPLACED_STEPPING_ACTIVE = -28,
00941 AMD_DBGAPI_STATUS_ERROR_RESUME_DISPLACED_STEPPING = -29,
00945 AMD_DBGAPI_STATUS_ERROR_INVALID_WATCHPOINT_ID = -30,
00949 AMD_DBGAPI_STATUS_ERROR_NO_WATCHPOINT_AVAILABLE = -31,
00953 AMD_DBGAPI_STATUS_ERROR_INVALID_REGISTER_CLASS_ID = -32,
00957 AMD_DBGAPI_STATUS_ERROR_INVALID_REGISTER_ID = -33,
00961 AMD_DBGAPI_STATUS_ERROR_INVALID_LANE_ID = -34,
00965 AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_CLASS_ID = -35,
00969 AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_SPACE_ID = -36,
00973 AMD_DBGAPI_STATUS_ERROR_MEMORY_ACCESS = -37,

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

192 File Documentation

00977 AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_SPACE_CONVERSION = -38,
00981 AMD_DBGAPI_STATUS_ERROR_INVALID_EVENT_ID = -39,
00985 AMD_DBGAPI_STATUS_ERROR_INVALID_BREAKPOINT_ID = -40,
00989 AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK = -41,
00993 AMD_DBGAPI_STATUS_ERROR_INVALID_CLIENT_PROCESS_ID = -42,
00997 AMD_DBGAPI_STATUS_ERROR_SYMBOL_NOT_FOUND = -43,
01002 AMD_DBGAPI_STATUS_ERROR_REGISTER_NOT_AVAILABLE = -44,
01006 AMD_DBGAPI_STATUS_ERROR_INVALID_WORKGROUP_ID = -45,
01010 AMD_DBGAPI_STATUS_ERROR_INCOMPATIBLE_PROCESS_STATE = -46,
01014 AMD_DBGAPI_STATUS_ERROR_PROCESS_FROZEN = -47,
01018 AMD_DBGAPI_STATUS_ERROR_PROCESS_ALREADY_FROZEN = -48,
01022 AMD_DBGAPI_STATUS_ERROR_PROCESS_NOT_FROZEN = -49,
01023 } amd_dbgapi_status_t;
01024
01041 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_get_status_string (
01042 amd_dbgapi_status_t status,
01043 const char **status_string) AMD_DBGAPI_VERSION_0_54;
01044
01068 #define AMD_DBGAPI_VERSION_MAJOR 0
01069
01074 #define AMD_DBGAPI_VERSION_MINOR 77
01075
01089 void AMD_DBGAPI amd_dbgapi_get_version (
01090 uint32_t *major, uint32_t *minor, uint32_t *patch) AMD_DBGAPI_VERSION_0_54;
01091
01100 const char AMD_DBGAPI *
01101 amd_dbgapi_get_build_name (void) AMD_DBGAPI_VERSION_0_54;
01102
01148 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_initialize (
01149 amd_dbgapi_callbacks_t *callbacks) AMD_DBGAPI_VERSION_0_76;
01150
01175 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_finalize (void)
01176 AMD_DBGAPI_VERSION_0_54;
01177
01199 typedef struct
01200 {
01201 uint64_t handle;
01202 } amd_dbgapi_architecture_id_t;
01203
01207 #define AMD_DBGAPI_ARCHITECTURE_NONE \
01208 AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_architecture_id_t, 0)
01209
01217 typedef enum
01218 {
01225 AMD_DBGAPI_ARCHITECTURE_INFO_NAME = 1,
01233 AMD_DBGAPI_ARCHITECTURE_INFO_ELF_AMDGPU_MACHINE = 2,
01238 AMD_DBGAPI_ARCHITECTURE_INFO_LARGEST_INSTRUCTION_SIZE = 3,
01244 AMD_DBGAPI_ARCHITECTURE_INFO_MINIMUM_INSTRUCTION_ALIGNMENT = 4,
01249 AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION_SIZE = 5,
01257 AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION = 6,
01263 AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION_PC_ADJUST = 7,
01268 AMD_DBGAPI_ARCHITECTURE_INFO_PC_REGISTER = 8
01269 } amd_dbgapi_architecture_info_t;
01270
01309 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_get_info (
01310 amd_dbgapi_architecture_id_t architecture_id,
01311 amd_dbgapi_architecture_info_t query, size_t value_size,
01312 void *value) AMD_DBGAPI_VERSION_0_54;
01313
01342 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_get_architecture (
01343 uint32_t elf_amdgpu_machine,
01344 amd_dbgapi_architecture_id_t *architecture_id) AMD_DBGAPI_VERSION_0_54;
01345
01352 typedef struct amd_dbgapi_symbolizer_id_s *amd_dbgapi_symbolizer_id_t;
01353
01447 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_disassemble_instruction (
01448 amd_dbgapi_architecture_id_t architecture_id,
01449 amd_dbgapi_global_address_t address, amd_dbgapi_size_t *size,
01450 const void *memory, char **instruction_text,
01451 amd_dbgapi_symbolizer_id_t symbolizer_id,
01452 amd_dbgapi_status_t (*symbolizer) (
01453 amd_dbgapi_symbolizer_id_t symbolizer_id,
01454 amd_dbgapi_global_address_t address,
01455 char **symbol_text)) AMD_DBGAPI_VERSION_0_54;
01456
01460 typedef enum
01461 {
01466 AMD_DBGAPI_INSTRUCTION_KIND_UNKNOWN = 0,
01472 AMD_DBGAPI_INSTRUCTION_KIND_SEQUENTIAL = 1,
01478 AMD_DBGAPI_INSTRUCTION_KIND_DIRECT_BRANCH = 2,
01485 AMD_DBGAPI_INSTRUCTION_KIND_DIRECT_BRANCH_CONDITIONAL = 3,

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

4.2 amd-dbgapi.h 193

01493 AMD_DBGAPI_INSTRUCTION_KIND_INDIRECT_BRANCH_REGISTER_PAIR = 4,
01503 AMD_DBGAPI_INSTRUCTION_KIND_INDIRECT_BRANCH_CONDITIONAL_REGISTER_PAIR = 5,
01514 AMD_DBGAPI_INSTRUCTION_KIND_DIRECT_CALL_REGISTER_PAIR = 6,
01524 AMD_DBGAPI_INSTRUCTION_KIND_INDIRECT_CALL_REGISTER_PAIRS = 7,
01529 AMD_DBGAPI_INSTRUCTION_KIND_TERMINATE = 8,
01543 AMD_DBGAPI_INSTRUCTION_KIND_TRAP = 9,
01548 AMD_DBGAPI_INSTRUCTION_KIND_HALT = 10,
01555 AMD_DBGAPI_INSTRUCTION_KIND_BARRIER = 11,
01561 AMD_DBGAPI_INSTRUCTION_KIND_SLEEP = 12,
01570 AMD_DBGAPI_INSTRUCTION_KIND_SPECIAL = 13
01571 } amd_dbgapi_instruction_kind_t;
01572
01576 typedef enum
01577 {
01581 AMD_DBGAPI_INSTRUCTION_PROPERTY_NONE = 0
01582 } amd_dbgapi_instruction_properties_t;
01583
01658 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_classify_instruction (
01659 amd_dbgapi_architecture_id_t architecture_id,
01660 amd_dbgapi_global_address_t address, amd_dbgapi_size_t *size,
01661 const void *memory, amd_dbgapi_instruction_kind_t *instruction_kind,
01662 amd_dbgapi_instruction_properties_t *instruction_properties,
01663 void **instruction_information) AMD_DBGAPI_VERSION_0_58;
01664
01686 typedef struct amd_dbgapi_client_process_s *amd_dbgapi_client_process_id_t;
01687
01698 typedef struct
01699 {
01700 uint64_t handle;
01701 } amd_dbgapi_process_id_t;
01702
01706 #define AMD_DBGAPI_PROCESS_NONE \
01707 AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_process_id_t, 0)
01708
01712 typedef enum
01713 {
01715 AMD_DBGAPI_ENDIAN_BIG = 0,
01716
01718 AMD_DBGAPI_ENDIAN_LITTLE = 1
01719 } amd_dbgapi_endianness_t;
01720
01724 typedef struct
01725 {
01727 amd_dbgapi_endianness_t endianness;
01731 size_t size;
01739 const void *data;
01740 } amd_dbgapi_core_state_data_t;
01741
01748 typedef enum
01749 {
01754 AMD_DBGAPI_PROCESS_INFO_NOTIFIER = 1,
01760 AMD_DBGAPI_PROCESS_INFO_WATCHPOINT_COUNT = 2,
01766 AMD_DBGAPI_PROCESS_INFO_WATCHPOINT_SHARE = 3,
01772 AMD_DBGAPI_PROCESS_INFO_PRECISE_MEMORY_SUPPORTED = 4,
01779 AMD_DBGAPI_PROCESS_INFO_PRECISE_ALU_EXCEPTIONS_SUPPORTED = 5,
01793 AMD_DBGAPI_PROCESS_INFO_OS_ID = 6,
01803 AMD_DBGAPI_PROCESS_INFO_CORE_STATE = 7,
01804 } amd_dbgapi_process_info_t;
01805
01855 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_get_info (
01856 amd_dbgapi_process_id_t process_id, amd_dbgapi_process_info_t query,
01857 size_t value_size, void *value) AMD_DBGAPI_VERSION_0_77;
01858
01955 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_attach (
01956 amd_dbgapi_client_process_id_t client_process_id,
01957 amd_dbgapi_process_id_t *process_id) AMD_DBGAPI_VERSION_0_56;
01958
02005 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_detach (
02006 amd_dbgapi_process_id_t process_id) AMD_DBGAPI_VERSION_0_54;
02007
02022 typedef enum
02023 {
02029 AMD_DBGAPI_PROGRESS_NORMAL = 0,
02053 AMD_DBGAPI_PROGRESS_NO_FORWARD = 1
02054 } amd_dbgapi_progress_t;
02055
02084 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_set_progress (
02085 amd_dbgapi_process_id_t process_id,
02086 amd_dbgapi_progress_t progress) AMD_DBGAPI_VERSION_0_76;
02087
02099 typedef enum

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

194 File Documentation

02100 {
02104 AMD_DBGAPI_WAVE_CREATION_NORMAL = 0,
02108 AMD_DBGAPI_WAVE_CREATION_STOP = 1
02109 } amd_dbgapi_wave_creation_t;
02110
02139 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_set_wave_creation (
02140 amd_dbgapi_process_id_t process_id,
02141 amd_dbgapi_wave_creation_t creation) AMD_DBGAPI_VERSION_0_76;
02142
02211 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_freeze (
02212 amd_dbgapi_process_id_t process_id) AMD_DBGAPI_VERSION_0_76;
02213
02238 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_unfreeze (
02239 amd_dbgapi_process_id_t process_id) AMD_DBGAPI_VERSION_0_76;
02240
02268 typedef struct
02269 {
02270 uint64_t handle;
02271 } amd_dbgapi_code_object_id_t;
02272
02276 #define AMD_DBGAPI_CODE_OBJECT_NONE \
02277 AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_code_object_id_t, 0)
02278
02285 typedef enum
02286 {
02291 AMD_DBGAPI_CODE_OBJECT_INFO_PROCESS = 1,
02347 AMD_DBGAPI_CODE_OBJECT_INFO_URI_NAME = 2,
02353 AMD_DBGAPI_CODE_OBJECT_INFO_LOAD_ADDRESS = 3
02354 } amd_dbgapi_code_object_info_t;
02355
02394 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_code_object_get_info (
02395 amd_dbgapi_code_object_id_t code_object_id,
02396 amd_dbgapi_code_object_info_t query, size_t value_size,
02397 void *value) AMD_DBGAPI_VERSION_0_54;
02398
02448 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_code_object_list (
02449 amd_dbgapi_process_id_t process_id, size_t *code_object_count,
02450 amd_dbgapi_code_object_id_t **code_objects,
02451 amd_dbgapi_changed_t *changed) AMD_DBGAPI_VERSION_0_54;
02452
02469 typedef struct
02470 {
02471 uint64_t handle;
02472 } amd_dbgapi_agent_id_t;
02473
02477 #define AMD_DBGAPI_AGENT_NONE \
02478 AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_agent_id_t, 0)
02479
02486 typedef enum
02487 {
02492 AMD_DBGAPI_AGENT_INFO_PROCESS = 1,
02498 AMD_DBGAPI_AGENT_INFO_NAME = 2,
02508 AMD_DBGAPI_AGENT_INFO_ARCHITECTURE = 3,
02513 AMD_DBGAPI_AGENT_INFO_STATE = 4,
02517 AMD_DBGAPI_AGENT_INFO_PCI_DOMAIN = 5,
02523 AMD_DBGAPI_AGENT_INFO_PCI_SLOT = 6,
02527 AMD_DBGAPI_AGENT_INFO_PCI_VENDOR_ID = 7,
02531 AMD_DBGAPI_AGENT_INFO_PCI_DEVICE_ID = 8,
02536 AMD_DBGAPI_AGENT_INFO_EXECUTION_UNIT_COUNT = 9,
02541 AMD_DBGAPI_AGENT_INFO_MAX_WAVES_PER_EXECUTION_UNIT = 10,
02546 AMD_DBGAPI_AGENT_INFO_OS_ID = 11
02547 } amd_dbgapi_agent_info_t;
02548
02552 typedef enum
02553 {
02557 AMD_DBGAPI_AGENT_STATE_SUPPORTED = 1,
02580 AMD_DBGAPI_AGENT_STATE_NOT_SUPPORTED = 2
02581 } amd_dbgapi_agent_state_t;
02582
02625 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_agent_get_info (
02626 amd_dbgapi_agent_id_t agent_id, amd_dbgapi_agent_info_t query,
02627 size_t value_size, void *value) AMD_DBGAPI_VERSION_0_67;
02628
02680 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_agent_list (
02681 amd_dbgapi_process_id_t process_id, size_t *agent_count,
02682 amd_dbgapi_agent_id_t **agents,
02683 amd_dbgapi_changed_t *changed) AMD_DBGAPI_VERSION_0_54;
02684
02703 typedef struct
02704 {
02705 uint64_t handle;

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

4.2 amd-dbgapi.h 195

02706 } amd_dbgapi_queue_id_t;
02707
02711 #define AMD_DBGAPI_QUEUE_NONE \
02712 AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_queue_id_t, 0)
02713
02720 typedef enum
02721 {
02726 AMD_DBGAPI_QUEUE_INFO_AGENT = 1,
02731 AMD_DBGAPI_QUEUE_INFO_PROCESS = 2,
02736 AMD_DBGAPI_QUEUE_INFO_ARCHITECTURE = 3,
02741 AMD_DBGAPI_QUEUE_INFO_TYPE = 4,
02746 AMD_DBGAPI_QUEUE_INFO_STATE = 5,
02753 AMD_DBGAPI_QUEUE_INFO_ERROR_REASON = 6,
02758 AMD_DBGAPI_QUEUE_INFO_ADDRESS = 7,
02763 AMD_DBGAPI_QUEUE_INFO_SIZE = 8,
02768 AMD_DBGAPI_QUEUE_INFO_OS_ID = 9
02769 } amd_dbgapi_queue_info_t;
02770
02809 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_queue_get_info (
02810 amd_dbgapi_queue_id_t queue_id, amd_dbgapi_queue_info_t query,
02811 size_t value_size, void *value) AMD_DBGAPI_VERSION_0_68;
02812
02816 typedef enum
02817 {
02821 AMD_DBGAPI_QUEUE_STATE_VALID = 1,
02835 AMD_DBGAPI_QUEUE_STATE_ERROR = 2
02836 } amd_dbgapi_queue_state_t;
02837
02842 typedef enum
02843 {
02847 AMD_DBGAPI_EXCEPTION_NONE = 0,
02851 AMD_DBGAPI_EXCEPTION_WAVE_ABORT = (1 « 0),
02861 AMD_DBGAPI_EXCEPTION_WAVE_TRAP = (1 « 1),
02877 AMD_DBGAPI_EXCEPTION_WAVE_MATH_ERROR = (1 « 2),
02881 AMD_DBGAPI_EXCEPTION_WAVE_ILLEGAL_INSTRUCTION = (1 « 3),
02887 AMD_DBGAPI_EXCEPTION_WAVE_MEMORY_VIOLATION = (1 « 4),
02894 AMD_DBGAPI_EXCEPTION_WAVE_ADDRESS_ERROR = (1 « 5),
02898 AMD_DBGAPI_EXCEPTION_WAVE_APERTURE_VIOLATION DEPRECATED
02899 = AMD_DBGAPI_EXCEPTION_WAVE_ADDRESS_ERROR,
02903 AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_DIM_INVALID = (1 « 16),
02907 AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_GROUP_SEGMENT_SIZE_INVALID = (1 « 17),
02911 AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_CODE_INVALID = (1 « 18),
02915 AMD_DBGAPI_EXCEPTION_PACKET_UNSUPPORTED = (1 « 20),
02919 AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_WORKGROUP_SIZE_INVALID = (1 « 21),
02923 AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_REGISTER_COUNT_TOO_LARGE = (1 « 22),
02927 AMD_DBGAPI_EXCEPTION_PACKET_VENDOR_UNSUPPORTED = (1 « 23),
02936 AMD_DBGAPI_EXCEPTION_QUEUE_PREEMPTION_ERROR = (1 « 31)
02937 } amd_dbgapi_exceptions_t;
02938
02991 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_queue_list (
02992 amd_dbgapi_process_id_t process_id, size_t *queue_count,
02993 amd_dbgapi_queue_id_t **queues,
02994 amd_dbgapi_changed_t *changed) AMD_DBGAPI_VERSION_0_54;
02995
03059 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_queue_packet_list (
03060 amd_dbgapi_queue_id_t queue_id,
03061 amd_dbgapi_os_queue_packet_id_t *read_packet_id,
03062 amd_dbgapi_os_queue_packet_id_t *write_packet_id,
03063 size_t *packets_byte_size, void **packets_bytes) AMD_DBGAPI_VERSION_0_54;
03064
03083 typedef struct
03084 {
03085 uint64_t handle;
03086 } amd_dbgapi_dispatch_id_t;
03087
03091 #define AMD_DBGAPI_DISPATCH_NONE \
03092 AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_dispatch_id_t, 0)
03093
03100 typedef enum
03101 {
03106 AMD_DBGAPI_DISPATCH_INFO_QUEUE = 1,
03111 AMD_DBGAPI_DISPATCH_INFO_AGENT = 2,
03116 AMD_DBGAPI_DISPATCH_INFO_PROCESS = 3,
03121 AMD_DBGAPI_DISPATCH_INFO_ARCHITECTURE = 4,
03127 AMD_DBGAPI_DISPATCH_INFO_OS_QUEUE_PACKET_ID = 5,
03132 AMD_DBGAPI_DISPATCH_INFO_BARRIER = 6,
03137 AMD_DBGAPI_DISPATCH_INFO_ACQUIRE_FENCE = 7,
03142 AMD_DBGAPI_DISPATCH_INFO_RELEASE_FENCE = 8,
03147 AMD_DBGAPI_DISPATCH_INFO_GRID_DIMENSIONS = 9,
03152 AMD_DBGAPI_DISPATCH_INFO_WORKGROUP_SIZES = 10,
03157 AMD_DBGAPI_DISPATCH_INFO_GRID_SIZES = 11,

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

196 File Documentation

03162 AMD_DBGAPI_DISPATCH_INFO_PRIVATE_SEGMENT_SIZE = 12,
03167 AMD_DBGAPI_DISPATCH_INFO_GROUP_SEGMENT_SIZE = 13,
03172 AMD_DBGAPI_DISPATCH_INFO_KERNEL_ARGUMENT_SEGMENT_ADDRESS = 14,
03177 AMD_DBGAPI_DISPATCH_INFO_KERNEL_DESCRIPTOR_ADDRESS = 15,
03182 AMD_DBGAPI_DISPATCH_INFO_KERNEL_CODE_ENTRY_ADDRESS = 16,
03192 AMD_DBGAPI_DISPATCH_INFO_KERNEL_COMPLETION_ADDRESS = 17
03193 } amd_dbgapi_dispatch_info_t;
03194
03236 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_dispatch_get_info (
03237 amd_dbgapi_dispatch_id_t dispatch_id, amd_dbgapi_dispatch_info_t query,
03238 size_t value_size, void *value) AMD_DBGAPI_VERSION_0_54;
03239
03246 typedef enum
03247 {
03251 AMD_DBGAPI_DISPATCH_BARRIER_NONE = 0,
03256 AMD_DBGAPI_DISPATCH_BARRIER_PRESENT = 1
03257 } amd_dbgapi_dispatch_barrier_t;
03258
03265 typedef enum
03266 {
03270 AMD_DBGAPI_DISPATCH_FENCE_SCOPE_NONE = 0,
03274 AMD_DBGAPI_DISPATCH_FENCE_SCOPE_AGENT = 1,
03278 AMD_DBGAPI_DISPATCH_FENCE_SCOPE_SYSTEM = 2
03279 } amd_dbgapi_dispatch_fence_scope_t;
03280
03329 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_dispatch_list (
03330 amd_dbgapi_process_id_t process_id, size_t *dispatch_count,
03331 amd_dbgapi_dispatch_id_t **dispatches,
03332 amd_dbgapi_changed_t *changed) AMD_DBGAPI_VERSION_0_54;
03333
03350 typedef struct
03351 {
03352 uint64_t handle;
03353 } amd_dbgapi_workgroup_id_t;
03354
03358 #define AMD_DBGAPI_WORKGROUP_NONE \
03359 AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_workgroup_id_t, 0)
03360
03367 typedef enum
03368 {
03378 AMD_DBGAPI_WORKGROUP_INFO_DISPATCH = 1,
03383 AMD_DBGAPI_WORKGROUP_INFO_QUEUE = 2,
03388 AMD_DBGAPI_WORKGROUP_INFO_AGENT = 3,
03393 AMD_DBGAPI_WORKGROUP_INFO_PROCESS = 4,
03398 AMD_DBGAPI_WORKGROUP_INFO_ARCHITECTURE = 5,
03409 AMD_DBGAPI_WORKGROUP_INFO_WORKGROUP_COORD = 6
03410 } amd_dbgapi_workgroup_info_t;
03411
03454 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_workgroup_get_info (
03455 amd_dbgapi_workgroup_id_t workgroup_id, amd_dbgapi_workgroup_info_t query,
03456 size_t value_size, void *value) AMD_DBGAPI_VERSION_0_64;
03457
03507 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_workgroup_list (
03508 amd_dbgapi_process_id_t process_id, size_t *workgroup_count,
03509 amd_dbgapi_workgroup_id_t **workgroups,
03510 amd_dbgapi_changed_t *changed) AMD_DBGAPI_VERSION_0_64;
03511
03528 typedef struct
03529 {
03530 uint64_t handle;
03531 } amd_dbgapi_wave_id_t;
03532
03536 #define AMD_DBGAPI_WAVE_NONE \
03537 AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_wave_id_t, 0)
03538
03545 typedef enum
03546 {
03551 AMD_DBGAPI_WAVE_INFO_STATE = 1,
03558 AMD_DBGAPI_WAVE_INFO_STOP_REASON = 2,
03571 AMD_DBGAPI_WAVE_INFO_WATCHPOINTS = 3,
03581 AMD_DBGAPI_WAVE_INFO_WORKGROUP = 4,
03591 AMD_DBGAPI_WAVE_INFO_DISPATCH = 5,
03596 AMD_DBGAPI_WAVE_INFO_QUEUE = 6,
03601 AMD_DBGAPI_WAVE_INFO_AGENT = 7,
03606 AMD_DBGAPI_WAVE_INFO_PROCESS = 8,
03611 AMD_DBGAPI_WAVE_INFO_ARCHITECTURE = 9,
03617 AMD_DBGAPI_WAVE_INFO_PC = 10,
03625 AMD_DBGAPI_WAVE_INFO_EXEC_MASK = 11,
03636 AMD_DBGAPI_WAVE_INFO_WORKGROUP_COORD = 12,
03648 AMD_DBGAPI_WAVE_INFO_WAVE_NUMBER_IN_WORKGROUP = 13,
03653 AMD_DBGAPI_WAVE_INFO_LANE_COUNT = 14

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

4.2 amd-dbgapi.h 197

03654 } amd_dbgapi_wave_info_t;
03655
03702 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_wave_get_info (
03703 amd_dbgapi_wave_id_t wave_id, amd_dbgapi_wave_info_t query,
03704 size_t value_size, void *value) AMD_DBGAPI_VERSION_0_64;
03705
03709 typedef enum
03710 {
03714 AMD_DBGAPI_WAVE_STATE_RUN = 1,
03719 AMD_DBGAPI_WAVE_STATE_SINGLE_STEP = 2,
03732 AMD_DBGAPI_WAVE_STATE_STOP = 3
03733 } amd_dbgapi_wave_state_t;
03734
03741 typedef enum
03742 {
03747 AMD_DBGAPI_WAVE_STOP_REASON_NONE = 0,
03753 AMD_DBGAPI_WAVE_STOP_REASON_BREAKPOINT = (1 « 0),
03765 AMD_DBGAPI_WAVE_STOP_REASON_WATCHPOINT = (1 « 1),
03769 AMD_DBGAPI_WAVE_STOP_REASON_SINGLE_STEP = (1 « 2),
03777 AMD_DBGAPI_WAVE_STOP_REASON_FP_INPUT_DENORMAL = (1 « 3),
03785 AMD_DBGAPI_WAVE_STOP_REASON_FP_DIVIDE_BY_0 = (1 « 4),
03793 AMD_DBGAPI_WAVE_STOP_REASON_FP_OVERFLOW = (1 « 5),
03801 AMD_DBGAPI_WAVE_STOP_REASON_FP_UNDERFLOW = (1 « 6),
03809 AMD_DBGAPI_WAVE_STOP_REASON_FP_INEXACT = (1 « 7),
03817 AMD_DBGAPI_WAVE_STOP_REASON_FP_INVALID_OPERATION = (1 « 8),
03825 AMD_DBGAPI_WAVE_STOP_REASON_INT_DIVIDE_BY_0 = (1 « 9),
03840 AMD_DBGAPI_WAVE_STOP_REASON_DEBUG_TRAP = (1 « 10),
03856 AMD_DBGAPI_WAVE_STOP_REASON_ASSERT_TRAP = (1 « 11),
03866 AMD_DBGAPI_WAVE_STOP_REASON_TRAP = (1 « 12),
03882 AMD_DBGAPI_WAVE_STOP_REASON_MEMORY_VIOLATION = (1 « 13),
03897 AMD_DBGAPI_WAVE_STOP_REASON_ADDRESS_ERROR = (1 « 14),
03901 AMD_DBGAPI_WAVE_STOP_REASON_APERTURE_VIOLATION DEPRECATED
03902 = AMD_DBGAPI_WAVE_STOP_REASON_ADDRESS_ERROR,
03911 AMD_DBGAPI_WAVE_STOP_REASON_ILLEGAL_INSTRUCTION = (1 « 15),
03924 AMD_DBGAPI_WAVE_STOP_REASON_ECC_ERROR = (1 « 16),
03931 AMD_DBGAPI_WAVE_STOP_REASON_FATAL_HALT = (1 « 17)
03932 } amd_dbgapi_wave_stop_reasons_t;
03933
03981 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_wave_list (
03982 amd_dbgapi_process_id_t process_id, size_t *wave_count,
03983 amd_dbgapi_wave_id_t **waves,
03984 amd_dbgapi_changed_t *changed) AMD_DBGAPI_VERSION_0_54;
03985
04067 amd_dbgapi_status_t AMD_DBGAPI
04068 amd_dbgapi_wave_stop (amd_dbgapi_wave_id_t wave_id) AMD_DBGAPI_VERSION_0_76;
04069
04073 typedef enum
04074 {
04078 AMD_DBGAPI_RESUME_MODE_NORMAL = 0,
04082 AMD_DBGAPI_RESUME_MODE_SINGLE_STEP = 1
04083 } amd_dbgapi_resume_mode_t;
04084
04239 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_wave_resume (
04240 amd_dbgapi_wave_id_t wave_id, amd_dbgapi_resume_mode_t resume_mode,
04241 amd_dbgapi_exceptions_t exceptions) AMD_DBGAPI_VERSION_0_76;
04242
04344 typedef struct
04345 {
04346 uint64_t handle;
04347 } amd_dbgapi_displaced_stepping_id_t;
04348
04352 #define AMD_DBGAPI_DISPLACED_STEPPING_NONE \
04353 (amd_dbgapi_displaced_stepping_id_t{ 0 })
04354
04362 typedef enum
04363 {
04368 AMD_DBGAPI_DISPLACED_STEPPING_INFO_PROCESS = 1
04369 } amd_dbgapi_displaced_stepping_info_t;
04370
04410 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_displaced_stepping_get_info (
04411 amd_dbgapi_displaced_stepping_id_t displaced_stepping_id,
04412 amd_dbgapi_displaced_stepping_info_t query, size_t value_size,
04413 void *value) AMD_DBGAPI_VERSION_0_54;
04414
04500 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_displaced_stepping_start (
04501 amd_dbgapi_wave_id_t wave_id, const void *saved_instruction_bytes,
04502 amd_dbgapi_displaced_stepping_id_t *displaced_stepping)
04503 AMD_DBGAPI_VERSION_0_76;
04504
04558 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_displaced_stepping_complete (
04559 amd_dbgapi_wave_id_t wave_id,

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

198 File Documentation

04560 amd_dbgapi_displaced_stepping_id_t displaced_stepping)
04561 AMD_DBGAPI_VERSION_0_76;
04562
04596 typedef struct
04597 {
04598 uint64_t handle;
04599 } amd_dbgapi_watchpoint_id_t;
04600
04604 #define AMD_DBGAPI_WATCHPOINT_NONE \
04605 AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_watchpoint_id_t, 0)
04606
04613 typedef enum
04614 {
04619 AMD_DBGAPI_WATCHPOINT_INFO_PROCESS = 1,
04624 AMD_DBGAPI_WATCHPOINT_INFO_ADDRESS = 2,
04629 AMD_DBGAPI_WATCHPOINT_INFO_SIZE = 3
04630 } amd_dbgapi_watchpoint_info_t;
04631
04670 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_watchpoint_get_info (
04671 amd_dbgapi_watchpoint_id_t watchpoint_id,
04672 amd_dbgapi_watchpoint_info_t query, size_t value_size,
04673 void *value) AMD_DBGAPI_VERSION_0_54;
04674
04681 typedef enum
04682 {
04686 AMD_DBGAPI_WATCHPOINT_SHARE_KIND_UNSUPPORTED = 0,
04692 AMD_DBGAPI_WATCHPOINT_SHARE_KIND_UNSHARED = 1,
04698 AMD_DBGAPI_WATCHPOINT_SHARE_KIND_SHARED = 2
04699 } amd_dbgapi_watchpoint_share_kind_t;
04700
04707 typedef enum
04708 {
04712 AMD_DBGAPI_WATCHPOINT_KIND_LOAD = 1,
04717 AMD_DBGAPI_WATCHPOINT_KIND_STORE_AND_RMW = 2,
04721 AMD_DBGAPI_WATCHPOINT_KIND_RMW = 3,
04726 AMD_DBGAPI_WATCHPOINT_KIND_ALL = 4
04727 } amd_dbgapi_watchpoint_kind_t;
04728
04735 typedef struct
04736 {
04737 size_t count;
04738 amd_dbgapi_watchpoint_id_t *watchpoint_ids;
04739 } amd_dbgapi_watchpoint_list_t;
04740
04812 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_set_watchpoint (
04813 amd_dbgapi_process_id_t process_id, amd_dbgapi_global_address_t address,
04814 amd_dbgapi_size_t size, amd_dbgapi_watchpoint_kind_t kind,
04815 amd_dbgapi_watchpoint_id_t *watchpoint_id) AMD_DBGAPI_VERSION_0_76;
04816
04839 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_remove_watchpoint (
04840 amd_dbgapi_watchpoint_id_t watchpoint_id) AMD_DBGAPI_VERSION_0_76;
04841
04863 typedef struct
04864 {
04865 uint64_t handle;
04866 } amd_dbgapi_register_class_id_t;
04867
04871 #define AMD_DBGAPI_REGISTER_CLASS_NONE \
04872 AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_register_class_id_t, 0)
04873
04881 typedef enum
04882 {
04887 AMD_DBGAPI_REGISTER_CLASS_INFO_ARCHITECTURE = 1,
04894 AMD_DBGAPI_REGISTER_CLASS_INFO_NAME = 2
04895 } amd_dbgapi_register_class_info_t;
04896
04935 amd_dbgapi_status_t AMD_DBGAPI
04936 amd_dbgapi_architecture_register_class_get_info (
04937 amd_dbgapi_register_class_id_t register_class_id,
04938 amd_dbgapi_register_class_info_t query, size_t value_size,
04939 void *value) AMD_DBGAPI_VERSION_0_54;
04940
04981 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_register_class_list (
04982 amd_dbgapi_architecture_id_t architecture_id, size_t *register_class_count,
04983 amd_dbgapi_register_class_id_t **register_classes) AMD_DBGAPI_VERSION_0_54;
04984
04993 typedef struct
04994 {
04995 uint64_t handle;
04996 } amd_dbgapi_register_id_t;
04997

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

4.2 amd-dbgapi.h 199

05001 #define AMD_DBGAPI_REGISTER_NONE \
05002 AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_register_id_t, 0)
05003
05010 typedef enum
05011 {
05015 AMD_DBGAPI_REGISTER_PROPERTY_NONE = 0,
05021 AMD_DBGAPI_REGISTER_PROPERTY_READONLY_BITS = (1 « 0),
05028 AMD_DBGAPI_REGISTER_PROPERTY_VOLATILE = (1 « 1),
05035 AMD_DBGAPI_REGISTER_PROPERTY_INVALIDATE_VOLATILE = (1 « 2)
05036 } amd_dbgapi_register_properties_t;
05037
05044 typedef enum
05045 {
05050 AMD_DBGAPI_REGISTER_INFO_ARCHITECTURE = 1,
05057 AMD_DBGAPI_REGISTER_INFO_NAME = 2,
05062 AMD_DBGAPI_REGISTER_INFO_SIZE = 3,
05123 AMD_DBGAPI_REGISTER_INFO_TYPE = 4,
05132 AMD_DBGAPI_REGISTER_INFO_DWARF = 5,
05137 AMD_DBGAPI_REGISTER_INFO_PROPERTIES = 6
05138 } amd_dbgapi_register_info_t;
05139
05183 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_register_get_info (
05184 amd_dbgapi_register_id_t register_id, amd_dbgapi_register_info_t query,
05185 size_t value_size, void *value) AMD_DBGAPI_VERSION_0_70;
05186
05190 typedef enum
05191 {
05195 AMD_DBGAPI_REGISTER_ABSENT = 0,
05199 AMD_DBGAPI_REGISTER_PRESENT = 1
05200 } amd_dbgapi_register_exists_t;
05201
05235 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_wave_register_exists (
05236 amd_dbgapi_wave_id_t wave_id, amd_dbgapi_register_id_t register_id,
05237 amd_dbgapi_register_exists_t *exists) AMD_DBGAPI_VERSION_0_54;
05238
05283 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_register_list (
05284 amd_dbgapi_architecture_id_t architecture_id, size_t *register_count,
05285 amd_dbgapi_register_id_t **registers) AMD_DBGAPI_VERSION_0_54;
05286
05330 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_wave_register_list (
05331 amd_dbgapi_wave_id_t wave_id, size_t *register_count,
05332 amd_dbgapi_register_id_t **registers) AMD_DBGAPI_VERSION_0_54;
05333
05370 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_dwarf_register_to_register (
05371 amd_dbgapi_architecture_id_t architecture_id, uint64_t dwarf_register,
05372 amd_dbgapi_register_id_t *register_id) AMD_DBGAPI_VERSION_0_54;
05373
05377 typedef enum
05378 {
05382 AMD_DBGAPI_REGISTER_CLASS_STATE_NOT_MEMBER = 0,
05386 AMD_DBGAPI_REGISTER_CLASS_STATE_MEMBER = 1
05387 } amd_dbgapi_register_class_state_t;
05388
05426 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_register_is_in_register_class (
05427 amd_dbgapi_register_class_id_t register_class_id,
05428 amd_dbgapi_register_id_t register_id,
05429 amd_dbgapi_register_class_state_t *register_class_state)
05430 AMD_DBGAPI_VERSION_0_54;
05431
05488 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_read_register (
05489 amd_dbgapi_wave_id_t wave_id, amd_dbgapi_register_id_t register_id,
05490 amd_dbgapi_size_t offset, amd_dbgapi_size_t value_size,
05491 void *value) AMD_DBGAPI_VERSION_0_62;
05492
05557 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_write_register (
05558 amd_dbgapi_wave_id_t wave_id, amd_dbgapi_register_id_t register_id,
05559 amd_dbgapi_size_t offset, amd_dbgapi_size_t value_size,
05560 const void *value) AMD_DBGAPI_VERSION_0_76;
05561
05615 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_prefetch_register (
05616 amd_dbgapi_wave_id_t wave_id, amd_dbgapi_register_id_t register_id,
05617 amd_dbgapi_size_t register_count) AMD_DBGAPI_VERSION_0_62;
05618
05626 typedef struct
05627 {
05628 amd_dbgapi_global_address_t target_address;
05629 amd_dbgapi_register_id_t saved_return_address_register[2];
05630 } amd_dbgapi_direct_call_register_pair_information_t;
05631
05671 typedef uint32_t amd_dbgapi_lane_id_t;
05672

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

200 File Documentation

05676 #define AMD_DBGAPI_LANE_NONE ((amd_dbgapi_lane_id_t) (-1))
05677
05691 typedef struct
05692 {
05693 uint64_t handle;
05694 } amd_dbgapi_address_class_id_t;
05695
05699 #define AMD_DBGAPI_ADDRESS_CLASS_NONE \
05700 AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_address_class_id_t, 0)
05701
05709 typedef enum
05710 {
05717 AMD_DBGAPI_ADDRESS_CLASS_INFO_NAME = 1,
05726 AMD_DBGAPI_ADDRESS_CLASS_INFO_ADDRESS_SPACE = 2,
05731 AMD_DBGAPI_ADDRESS_CLASS_INFO_DWARF = 3
05732 } amd_dbgapi_address_class_info_t;
05733
05773 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_address_class_get_info (
05774 amd_dbgapi_address_class_id_t address_class_id,
05775 amd_dbgapi_address_class_info_t query, size_t value_size,
05776 void *value) AMD_DBGAPI_VERSION_0_62;
05777
05819 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_address_class_list (
05820 amd_dbgapi_architecture_id_t architecture_id, size_t *address_class_count,
05821 amd_dbgapi_address_class_id_t **address_classes) AMD_DBGAPI_VERSION_0_54;
05822
05860 amd_dbgapi_status_t AMD_DBGAPI
05861 amd_dbgapi_dwarf_address_class_to_address_class (
05862 amd_dbgapi_architecture_id_t architecture_id, uint64_t dwarf_address_class,
05863 amd_dbgapi_address_class_id_t *address_class_id) AMD_DBGAPI_VERSION_0_54;
05864
05876 typedef struct
05877 {
05878 uint64_t handle;
05879 } amd_dbgapi_address_space_id_t;
05880
05884 #define AMD_DBGAPI_ADDRESS_SPACE_NONE \
05885 AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_address_space_id_t, 0)
05886
05893 #define AMD_DBGAPI_ADDRESS_SPACE_GLOBAL \
05894 AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_address_space_id_t, 1)
05895
05899 typedef enum
05900 {
05905 AMD_DBGAPI_ADDRESS_SPACE_ACCESS_ALL = 1,
05910 AMD_DBGAPI_ADDRESS_SPACE_ACCESS_PROGRAM_CONSTANT = 2,
05915 AMD_DBGAPI_ADDRESS_SPACE_ACCESS_DISPATCH_CONSTANT = 3
05916 } amd_dbgapi_address_space_access_t;
05917
05925 typedef enum
05926 {
05933 AMD_DBGAPI_ADDRESS_SPACE_INFO_NAME = 1,
05938 AMD_DBGAPI_ADDRESS_SPACE_INFO_ADDRESS_SIZE = 2,
05943 AMD_DBGAPI_ADDRESS_SPACE_INFO_NULL_ADDRESS = 3,
05948 AMD_DBGAPI_ADDRESS_SPACE_INFO_ACCESS = 4,
05953 AMD_DBGAPI_ADDRESS_SPACE_INFO_DWARF = 5
05954 } amd_dbgapi_address_space_info_t;
05955
05994 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_address_space_get_info (
05995 amd_dbgapi_address_space_id_t address_space_id,
05996 amd_dbgapi_address_space_info_t query, size_t value_size,
05997 void *value) AMD_DBGAPI_VERSION_0_62;
05998
06037 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_architecture_address_space_list (
06038 amd_dbgapi_architecture_id_t architecture_id, size_t *address_space_count,
06039 amd_dbgapi_address_space_id_t **address_spaces) AMD_DBGAPI_VERSION_0_54;
06040
06079 amd_dbgapi_status_t AMD_DBGAPI
06080 amd_dbgapi_dwarf_address_space_to_address_space (
06081 amd_dbgapi_architecture_id_t architecture_id, uint64_t dwarf_address_space,
06082 amd_dbgapi_address_space_id_t *address_space_id) AMD_DBGAPI_VERSION_0_54;
06083
06100 typedef uint64_t amd_dbgapi_segment_address_t;
06101
06216 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_convert_address_space (
06217 amd_dbgapi_wave_id_t wave_id, amd_dbgapi_lane_id_t lane_id,
06218 amd_dbgapi_address_space_id_t source_address_space_id,
06219 amd_dbgapi_segment_address_t source_segment_address,
06220 amd_dbgapi_address_space_id_t destination_address_space_id,
06221 amd_dbgapi_segment_address_t *destination_segment_address,
06222 amd_dbgapi_size_t *destination_contiguous_bytes)

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

4.2 amd-dbgapi.h 201

06223 AMD_DBGAPI_VERSION_0_62;
06224
06230 typedef enum
06231 {
06235 AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_NONE = 0,
06239 AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_LANE = 1,
06243 AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_WAVE = 2,
06247 AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_WORKGROUP = 3,
06251 AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_AGENT = 4,
06255 AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_PROCESS = 5
06256 } amd_dbgapi_segment_address_dependency_t;
06257
06296 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_address_dependency (
06297 amd_dbgapi_address_space_id_t address_space_id,
06298 amd_dbgapi_segment_address_t segment_address,
06299 amd_dbgapi_segment_address_dependency_t *segment_address_dependency)
06300 AMD_DBGAPI_VERSION_0_64;
06301
06306 typedef enum
06307 {
06312 AMD_DBGAPI_ADDRESS_CLASS_STATE_NOT_MEMBER = 0,
06317 AMD_DBGAPI_ADDRESS_CLASS_STATE_MEMBER = 1
06318 } amd_dbgapi_address_class_state_t;
06319
06391 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_address_is_in_address_class (
06392 amd_dbgapi_wave_id_t wave_id, amd_dbgapi_lane_id_t lane_id,
06393 amd_dbgapi_address_space_id_t address_space_id,
06394 amd_dbgapi_segment_address_t segment_address,
06395 amd_dbgapi_address_class_id_t address_class_id,
06396 amd_dbgapi_address_class_state_t *address_class_state)
06397 AMD_DBGAPI_VERSION_0_54;
06398
06497 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_read_memory (
06498 amd_dbgapi_process_id_t process_id, amd_dbgapi_wave_id_t wave_id,
06499 amd_dbgapi_lane_id_t lane_id,
06500 amd_dbgapi_address_space_id_t address_space_id,
06501 amd_dbgapi_segment_address_t segment_address,
06502 amd_dbgapi_size_t *value_size, void *value) AMD_DBGAPI_VERSION_0_54;
06503
06606 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_write_memory (
06607 amd_dbgapi_process_id_t process_id, amd_dbgapi_wave_id_t wave_id,
06608 amd_dbgapi_lane_id_t lane_id,
06609 amd_dbgapi_address_space_id_t address_space_id,
06610 amd_dbgapi_segment_address_t segment_address,
06611 amd_dbgapi_size_t *value_size, const void *value) AMD_DBGAPI_VERSION_0_76;
06612
06631 typedef enum
06632 {
06637 AMD_DBGAPI_MEMORY_PRECISION_NONE = 0,
06642 AMD_DBGAPI_MEMORY_PRECISION_PRECISE = 1
06643 } amd_dbgapi_memory_precision_t;
06644
06683 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_set_memory_precision (
06684 amd_dbgapi_process_id_t process_id,
06685 amd_dbgapi_memory_precision_t memory_precision) AMD_DBGAPI_VERSION_0_54;
06686
06705 typedef enum
06706 {
06711 AMD_DBGAPI_ALU_EXCEPTIONS_PRECISION_NONE = 0,
06717 AMD_DBGAPI_ALU_EXCEPTIONS_PRECISION_PRECISE = 1
06718 } amd_dbgapi_alu_exceptions_precision_t;
06719
06759 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_set_alu_exceptions_precision (
06760 amd_dbgapi_process_id_t process_id,
06761 amd_dbgapi_alu_exceptions_precision_t alu_exceptions_precision)
06762 AMD_DBGAPI_VERSION_0_77;
06763
06795 typedef struct
06796 {
06797 uint64_t handle;
06798 } amd_dbgapi_event_id_t;
06799
06803 #define AMD_DBGAPI_EVENT_NONE \
06804 AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_event_id_t, 0)
06805
06809 typedef enum
06810 {
06814 AMD_DBGAPI_EVENT_KIND_NONE = 0,
06818 AMD_DBGAPI_EVENT_KIND_WAVE_STOP = 1,
06833 AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED = 2,
06855 AMD_DBGAPI_EVENT_KIND_CODE_OBJECT_LIST_UPDATED = 3,

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

202 File Documentation

06868 AMD_DBGAPI_EVENT_KIND_BREAKPOINT_RESUME = 4,
06883 AMD_DBGAPI_EVENT_KIND_RUNTIME = 5,
06917 AMD_DBGAPI_EVENT_KIND_QUEUE_ERROR = 6
06918 } amd_dbgapi_event_kind_t;
06919
06955 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_process_next_pending_event (
06956 amd_dbgapi_process_id_t process_id, amd_dbgapi_event_id_t *event_id,
06957 amd_dbgapi_event_kind_t *kind) AMD_DBGAPI_VERSION_0_54;
06958
06962 typedef enum
06963 {
06968 AMD_DBGAPI_RUNTIME_STATE_LOADED_SUCCESS = 1,
06972 AMD_DBGAPI_RUNTIME_STATE_UNLOADED = 2,
06978 AMD_DBGAPI_RUNTIME_STATE_LOADED_ERROR_RESTRICTION = 3
06979 } amd_dbgapi_runtime_state_t;
06980
06987 typedef enum
06988 {
06993 AMD_DBGAPI_EVENT_INFO_PROCESS = 1,
06998 AMD_DBGAPI_EVENT_INFO_KIND = 2,
07004 AMD_DBGAPI_EVENT_INFO_WAVE = 3,
07009 AMD_DBGAPI_EVENT_INFO_BREAKPOINT = 4,
07014 AMD_DBGAPI_EVENT_INFO_CLIENT_THREAD = 5,
07021 AMD_DBGAPI_EVENT_INFO_RUNTIME_STATE = 6,
07026 AMD_DBGAPI_EVENT_INFO_QUEUE = 7
07027 } amd_dbgapi_event_info_t;
07028
07068 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_event_get_info (
07069 amd_dbgapi_event_id_t event_id, amd_dbgapi_event_info_t query,
07070 size_t value_size, void *value) AMD_DBGAPI_VERSION_0_54;
07071
07097 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_event_processed (
07098 amd_dbgapi_event_id_t event_id) AMD_DBGAPI_VERSION_0_54;
07099
07121 typedef enum
07122 {
07126 AMD_DBGAPI_LOG_LEVEL_NONE = 0,
07131 AMD_DBGAPI_LOG_LEVEL_FATAL_ERROR = 1,
07135 AMD_DBGAPI_LOG_LEVEL_WARNING = 2,
07139 AMD_DBGAPI_LOG_LEVEL_INFO = 3,
07143 AMD_DBGAPI_LOG_LEVEL_TRACE = 4,
07147 AMD_DBGAPI_LOG_LEVEL_VERBOSE = 5
07148 } amd_dbgapi_log_level_t;
07149
07168 void AMD_DBGAPI amd_dbgapi_set_log_level (amd_dbgapi_log_level_t level)
07169 AMD_DBGAPI_VERSION_0_54;
07170
07196 typedef struct
07197 {
07198 uint64_t handle;
07199 } amd_dbgapi_breakpoint_id_t;
07200
07204 #define AMD_DBGAPI_BREAKPOINT_NONE \
07205 AMD_DBGAPI_HANDLE_LITERAL (amd_dbgapi_breakpoint_id_t, 0)
07206
07213 typedef enum
07214 {
07219 AMD_DBGAPI_BREAKPOINT_INFO_PROCESS = 1
07220 } amd_dbgapi_breakpoint_info_t;
07221
07260 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_breakpoint_get_info (
07261 amd_dbgapi_breakpoint_id_t breakpoint_id,
07262 amd_dbgapi_breakpoint_info_t query, size_t value_size,
07263 void *value) AMD_DBGAPI_VERSION_0_54;
07264
07268 typedef enum
07269 {
07273 AMD_DBGAPI_BREAKPOINT_ACTION_RESUME = 1,
07277 AMD_DBGAPI_BREAKPOINT_ACTION_HALT = 2
07278 } amd_dbgapi_breakpoint_action_t;
07279
07289 typedef struct amd_dbgapi_client_thread_s *amd_dbgapi_client_thread_id_t;
07290
07328 amd_dbgapi_status_t AMD_DBGAPI amd_dbgapi_report_breakpoint_hit (
07329 amd_dbgapi_breakpoint_id_t breakpoint_id,
07330 amd_dbgapi_client_thread_id_t client_thread_id,
07331 amd_dbgapi_breakpoint_action_t *breakpoint_action) AMD_DBGAPI_VERSION_0_54;
07332
07339 typedef enum
07340 {
07351 AMD_DBGAPI_CLIENT_PROCESS_INFO_OS_PID = 1,

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

4.2 amd-dbgapi.h 203

07361 AMD_DBGAPI_CLIENT_PROCESS_INFO_CORE_STATE = 2,
07362 } amd_dbgapi_client_process_info_t;
07363
07370 struct amd_dbgapi_callbacks_s
07371 {
07372
07384 void *(*allocate_memory) (size_t byte_size);
07385
07402 void (*deallocate_memory) (void *data);
07403
07438 amd_dbgapi_status_t (*client_process_get_info) (
07439 amd_dbgapi_client_process_id_t client_process_id,
07440 amd_dbgapi_client_process_info_t query,
07441 size_t value_size, void *value);
07442
07478 amd_dbgapi_status_t (*insert_breakpoint) (
07479 amd_dbgapi_client_process_id_t client_process_id,
07480 amd_dbgapi_global_address_t address,
07481 amd_dbgapi_breakpoint_id_t breakpoint_id);
07482
07513 amd_dbgapi_status_t (*remove_breakpoint) (
07514 amd_dbgapi_client_process_id_t client_process_id,
07515 amd_dbgapi_breakpoint_id_t breakpoint_id);
07516
07553 amd_dbgapi_status_t (*xfer_global_memory) (
07554 amd_dbgapi_client_process_id_t client_process_id,
07555 amd_dbgapi_global_address_t global_address,
07556 amd_dbgapi_size_t *value_size, void *read_buffer,
07557 const void *write_buffer);
07558
07567 void (*log_message) (amd_dbgapi_log_level_t level, const char *message);
07568 };
07569
07572 #if defined(__cplusplus)
07573 } /* extern "C" */
07574 #endif /* defined (__cplusplus) */
07575
07576 #endif /* amd-dbgapi.h */

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

204 File Documentation

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

Index

Agents, 52
amd_dbgapi_agent_get_info, 54
AMD_DBGAPI_AGENT_INFO_ARCHITECTURE,

53
AMD_DBGAPI_AGENT_INFO_EXECUTION_UNIT_COUNT,

53
AMD_DBGAPI_AGENT_INFO_MAX_WAVES_PER_EXECUTION_UNIT,

53
AMD_DBGAPI_AGENT_INFO_NAME, 53
AMD_DBGAPI_AGENT_INFO_OS_ID, 53
AMD_DBGAPI_AGENT_INFO_PCI_DEVICE_ID, 53
AMD_DBGAPI_AGENT_INFO_PCI_DOMAIN, 53
AMD_DBGAPI_AGENT_INFO_PCI_SLOT, 53
AMD_DBGAPI_AGENT_INFO_PCI_VENDOR_ID,

53
AMD_DBGAPI_AGENT_INFO_PROCESS, 53
AMD_DBGAPI_AGENT_INFO_STATE, 53
amd_dbgapi_agent_info_t, 53
AMD_DBGAPI_AGENT_NONE, 53
AMD_DBGAPI_AGENT_STATE_NOT_SUPPORTED,

54
AMD_DBGAPI_AGENT_STATE_SUPPORTED, 54
amd_dbgapi_agent_state_t, 54
amd_dbgapi_process_agent_list, 55

allocate_memory
amd_dbgapi_callbacks_s, 157

AMD Debugger API Specification, 1
amd-dbgapi.h

AMD_DBGAPI, 188
AMD_DBGAPI_CALL, 188
AMD_DBGAPI_EXPORT, 189
AMD_DBGAPI_HANDLE_LITERAL, 189
AMD_DBGAPI_IMPORT, 189
DEPRECATED, 189

AMD_DBGAPI
amd-dbgapi.h, 188

amd_dbgapi_address_class_get_info
Memory, 122

amd_dbgapi_address_class_id_t, 153
handle, 153

AMD_DBGAPI_ADDRESS_CLASS_INFO_ADDRESS_SPACE
Memory, 119

AMD_DBGAPI_ADDRESS_CLASS_INFO_DWARF
Memory, 119

AMD_DBGAPI_ADDRESS_CLASS_INFO_NAME

Memory, 119
amd_dbgapi_address_class_info_t

Memory, 119
AMD_DBGAPI_ADDRESS_CLASS_NONE

Memory, 117
AMD_DBGAPI_ADDRESS_CLASS_STATE_MEMBER

Memory, 119
AMD_DBGAPI_ADDRESS_CLASS_STATE_NOT_MEMBER

Memory, 119
amd_dbgapi_address_class_state_t

Memory, 119
amd_dbgapi_address_dependency

Memory, 123
amd_dbgapi_address_is_in_address_class

Memory, 124
AMD_DBGAPI_ADDRESS_SPACE_ACCESS_ALL

Memory, 120
AMD_DBGAPI_ADDRESS_SPACE_ACCESS_DISPATCH_CONSTANT

Memory, 120
AMD_DBGAPI_ADDRESS_SPACE_ACCESS_PROGRAM_CONSTANT

Memory, 120
amd_dbgapi_address_space_access_t

Memory, 119
amd_dbgapi_address_space_get_info

Memory, 125
AMD_DBGAPI_ADDRESS_SPACE_GLOBAL

Memory, 117
amd_dbgapi_address_space_id_t, 154

handle, 154
AMD_DBGAPI_ADDRESS_SPACE_INFO_ACCESS

Memory, 120
AMD_DBGAPI_ADDRESS_SPACE_INFO_ADDRESS_SIZE

Memory, 120
AMD_DBGAPI_ADDRESS_SPACE_INFO_DWARF

Memory, 120
AMD_DBGAPI_ADDRESS_SPACE_INFO_NAME

Memory, 120
AMD_DBGAPI_ADDRESS_SPACE_INFO_NULL_ADDRESS

Memory, 120
amd_dbgapi_address_space_info_t

Memory, 120
AMD_DBGAPI_ADDRESS_SPACE_NONE

Memory, 117
amd_dbgapi_agent_get_info

Agents, 54

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

206 INDEX

amd_dbgapi_agent_id_t, 154
handle, 155

AMD_DBGAPI_AGENT_INFO_ARCHITECTURE
Agents, 53

AMD_DBGAPI_AGENT_INFO_EXECUTION_UNIT_COUNT
Agents, 53

AMD_DBGAPI_AGENT_INFO_MAX_WAVES_PER_EXECUTION_UNIT
Agents, 53

AMD_DBGAPI_AGENT_INFO_NAME
Agents, 53

AMD_DBGAPI_AGENT_INFO_OS_ID
Agents, 53

AMD_DBGAPI_AGENT_INFO_PCI_DEVICE_ID
Agents, 53

AMD_DBGAPI_AGENT_INFO_PCI_DOMAIN
Agents, 53

AMD_DBGAPI_AGENT_INFO_PCI_SLOT
Agents, 53

AMD_DBGAPI_AGENT_INFO_PCI_VENDOR_ID
Agents, 53

AMD_DBGAPI_AGENT_INFO_PROCESS
Agents, 53

AMD_DBGAPI_AGENT_INFO_STATE
Agents, 53

amd_dbgapi_agent_info_t
Agents, 53

AMD_DBGAPI_AGENT_NONE
Agents, 53

AMD_DBGAPI_AGENT_STATE_NOT_SUPPORTED
Agents, 54

AMD_DBGAPI_AGENT_STATE_SUPPORTED
Agents, 54

amd_dbgapi_agent_state_t
Agents, 54

AMD_DBGAPI_ALU_EXCEPTIONS_PRECISION_NONE
Memory, 121

AMD_DBGAPI_ALU_EXCEPTIONS_PRECISION_PRECISE
Memory, 121

amd_dbgapi_alu_exceptions_precision_t
Memory, 120

amd_dbgapi_architecture_address_class_list
Memory, 126

amd_dbgapi_architecture_address_space_list
Memory, 127

amd_dbgapi_architecture_get_info
Architectures, 30

amd_dbgapi_architecture_id_t, 155
handle, 155

AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION
Architectures, 27

AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION_PC_ADJUST
Architectures, 27

AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION_SIZE
Architectures, 27

AMD_DBGAPI_ARCHITECTURE_INFO_ELF_AMDGPU_MACHINE
Architectures, 27

AMD_DBGAPI_ARCHITECTURE_INFO_LARGEST_INSTRUCTION_SIZE
Architectures, 27

AMD_DBGAPI_ARCHITECTURE_INFO_MINIMUM_INSTRUCTION_ALIGNMENT
Architectures, 27

AMD_DBGAPI_ARCHITECTURE_INFO_NAME
Architectures, 27

AMD_DBGAPI_ARCHITECTURE_INFO_PC_REGISTER
Architectures, 27

amd_dbgapi_architecture_info_t
Architectures, 26

AMD_DBGAPI_ARCHITECTURE_NONE
Architectures, 26

amd_dbgapi_architecture_register_class_get_info
Registers, 104

amd_dbgapi_architecture_register_class_list
Registers, 105

amd_dbgapi_architecture_register_list
Registers, 106

AMD_DBGAPI_BREAKPOINT_ACTION_HALT
Callbacks, 148

AMD_DBGAPI_BREAKPOINT_ACTION_RESUME
Callbacks, 148

amd_dbgapi_breakpoint_action_t
Callbacks, 148

amd_dbgapi_breakpoint_get_info
Callbacks, 149

amd_dbgapi_breakpoint_id_t, 156
handle, 156

AMD_DBGAPI_BREAKPOINT_INFO_PROCESS
Callbacks, 149

amd_dbgapi_breakpoint_info_t
Callbacks, 148

AMD_DBGAPI_BREAKPOINT_NONE
Callbacks, 148

AMD_DBGAPI_CALL
amd-dbgapi.h, 188

amd_dbgapi_callbacks_s, 156
allocate_memory, 157
client_process_get_info, 157
deallocate_memory, 158
insert_breakpoint, 158
log_message, 159
remove_breakpoint, 159
xfer_global_memory, 160

amd_dbgapi_callbacks_t
Callbacks, 148

AMD_DBGAPI_CHANGED_NO
Basic Types, 14

amd_dbgapi_changed_t
Basic Types, 14

AMD_DBGAPI_CHANGED_YES
Basic Types, 14

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

INDEX 207

amd_dbgapi_classify_instruction
Architectures, 30

amd_dbgapi_client_process_id_t
Processes, 37

AMD_DBGAPI_CLIENT_PROCESS_INFO_CORE_STATE
Callbacks, 149

AMD_DBGAPI_CLIENT_PROCESS_INFO_OS_PID
Callbacks, 149

amd_dbgapi_client_process_info_t
Callbacks, 149

amd_dbgapi_client_thread_id_t
Callbacks, 148

amd_dbgapi_code_object_get_info
Code Objects, 50

amd_dbgapi_code_object_id_t, 161
handle, 161

AMD_DBGAPI_CODE_OBJECT_INFO_LOAD_ADDRESS
Code Objects, 50

AMD_DBGAPI_CODE_OBJECT_INFO_PROCESS
Code Objects, 48

amd_dbgapi_code_object_info_t
Code Objects, 48

AMD_DBGAPI_CODE_OBJECT_INFO_URI_NAME
Code Objects, 49

AMD_DBGAPI_CODE_OBJECT_NONE
Code Objects, 48

amd_dbgapi_convert_address_space
Memory, 128

amd_dbgapi_core_state_data_t, 161
data, 162
endianness, 162
size, 162

amd_dbgapi_direct_call_register_pair_information_t, 163
saved_return_address_register, 163
target_address, 163

amd_dbgapi_disassemble_instruction
Architectures, 32

AMD_DBGAPI_DISPATCH_BARRIER_NONE
Dispatches, 66

AMD_DBGAPI_DISPATCH_BARRIER_PRESENT
Dispatches, 66

amd_dbgapi_dispatch_barrier_t
Dispatches, 66

AMD_DBGAPI_DISPATCH_FENCE_SCOPE_AGENT
Dispatches, 66

AMD_DBGAPI_DISPATCH_FENCE_SCOPE_NONE
Dispatches, 66

AMD_DBGAPI_DISPATCH_FENCE_SCOPE_SYSTEM
Dispatches, 66

amd_dbgapi_dispatch_fence_scope_t
Dispatches, 66

amd_dbgapi_dispatch_get_info
Dispatches, 68

amd_dbgapi_dispatch_id_t, 164

handle, 164
AMD_DBGAPI_DISPATCH_INFO_ACQUIRE_FENCE

Dispatches, 67
AMD_DBGAPI_DISPATCH_INFO_AGENT

Dispatches, 67
AMD_DBGAPI_DISPATCH_INFO_ARCHITECTURE

Dispatches, 67
AMD_DBGAPI_DISPATCH_INFO_BARRIER

Dispatches, 67
AMD_DBGAPI_DISPATCH_INFO_GRID_DIMENSIONS

Dispatches, 67
AMD_DBGAPI_DISPATCH_INFO_GRID_SIZES

Dispatches, 67
AMD_DBGAPI_DISPATCH_INFO_GROUP_SEGMENT_SIZE

Dispatches, 67
AMD_DBGAPI_DISPATCH_INFO_KERNEL_ARGUMENT_SEGMENT_ADDRESS

Dispatches, 67
AMD_DBGAPI_DISPATCH_INFO_KERNEL_CODE_ENTRY_ADDRESS

Dispatches, 67
AMD_DBGAPI_DISPATCH_INFO_KERNEL_COMPLETION_ADDRESS

Dispatches, 68
AMD_DBGAPI_DISPATCH_INFO_KERNEL_DESCRIPTOR_ADDRESS

Dispatches, 67
AMD_DBGAPI_DISPATCH_INFO_OS_QUEUE_PACKET_ID

Dispatches, 67
AMD_DBGAPI_DISPATCH_INFO_PRIVATE_SEGMENT_SIZE

Dispatches, 67
AMD_DBGAPI_DISPATCH_INFO_PROCESS

Dispatches, 67
AMD_DBGAPI_DISPATCH_INFO_QUEUE

Dispatches, 67
AMD_DBGAPI_DISPATCH_INFO_RELEASE_FENCE

Dispatches, 67
amd_dbgapi_dispatch_info_t

Dispatches, 66
AMD_DBGAPI_DISPATCH_INFO_WORKGROUP_SIZES

Dispatches, 67
AMD_DBGAPI_DISPATCH_NONE

Dispatches, 66
amd_dbgapi_displaced_stepping_complete

Displaced Stepping, 90
amd_dbgapi_displaced_stepping_get_info

Displaced Stepping, 91
amd_dbgapi_displaced_stepping_id_t, 164

handle, 165
AMD_DBGAPI_DISPLACED_STEPPING_INFO_PROCESS

Displaced Stepping, 90
amd_dbgapi_displaced_stepping_info_t

Displaced Stepping, 89
AMD_DBGAPI_DISPLACED_STEPPING_NONE

Displaced Stepping, 89
amd_dbgapi_displaced_stepping_start

Displaced Stepping, 92
amd_dbgapi_dwarf_address_class_to_address_class

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

208 INDEX

Memory, 130
amd_dbgapi_dwarf_address_space_to_address_space

Memory, 131
amd_dbgapi_dwarf_register_to_register

Registers, 107
AMD_DBGAPI_ENDIAN_BIG

Processes, 37
AMD_DBGAPI_ENDIAN_LITTLE

Processes, 37
amd_dbgapi_endianness_t

Processes, 37
amd_dbgapi_event_get_info

Events, 143
amd_dbgapi_event_id_t, 165

handle, 165
AMD_DBGAPI_EVENT_INFO_BREAKPOINT

Events, 140
AMD_DBGAPI_EVENT_INFO_CLIENT_THREAD

Events, 140
AMD_DBGAPI_EVENT_INFO_KIND

Events, 139
AMD_DBGAPI_EVENT_INFO_PROCESS

Events, 139
AMD_DBGAPI_EVENT_INFO_QUEUE

Events, 140
AMD_DBGAPI_EVENT_INFO_RUNTIME_STATE

Events, 140
amd_dbgapi_event_info_t

Events, 139
AMD_DBGAPI_EVENT_INFO_WAVE

Events, 139
AMD_DBGAPI_EVENT_KIND_BREAKPOINT_RESUME

Events, 141
AMD_DBGAPI_EVENT_KIND_CODE_OBJECT_LIST_UPDATED

Events, 141
AMD_DBGAPI_EVENT_KIND_NONE

Events, 140
AMD_DBGAPI_EVENT_KIND_QUEUE_ERROR

Events, 142
AMD_DBGAPI_EVENT_KIND_RUNTIME

Events, 141
amd_dbgapi_event_kind_t

Events, 140
AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED

Events, 140
AMD_DBGAPI_EVENT_KIND_WAVE_STOP

Events, 140
AMD_DBGAPI_EVENT_NONE

Events, 139
amd_dbgapi_event_processed

Events, 143
AMD_DBGAPI_EXCEPTION_NONE

Queues, 58
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_CODE_INVALID

Queues, 59
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_DIM_INVALID

Queues, 59
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_GROUP_SEGMENT_SIZE_INVALID

Queues, 59
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_REGISTER_COUNT_TOO_LARGE

Queues, 59
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_WORKGROUP_SIZE_INVALID

Queues, 59
AMD_DBGAPI_EXCEPTION_PACKET_UNSUPPORTED

Queues, 59
AMD_DBGAPI_EXCEPTION_PACKET_VENDOR_UNSUPPORTED

Queues, 59
AMD_DBGAPI_EXCEPTION_QUEUE_PREEMPTION_ERROR

Queues, 60
AMD_DBGAPI_EXCEPTION_WAVE_ABORT

Queues, 58
AMD_DBGAPI_EXCEPTION_WAVE_ADDRESS_ERROR

Queues, 59
AMD_DBGAPI_EXCEPTION_WAVE_ILLEGAL_INSTRUCTION

Queues, 59
AMD_DBGAPI_EXCEPTION_WAVE_MATH_ERROR

Queues, 59
AMD_DBGAPI_EXCEPTION_WAVE_MEMORY_VIOLATION

Queues, 59
AMD_DBGAPI_EXCEPTION_WAVE_TRAP

Queues, 58
amd_dbgapi_exceptions_t

Queues, 58
AMD_DBGAPI_EXPORT

amd-dbgapi.h, 189
amd_dbgapi_finalize

Initialization and Finalization, 23
amd_dbgapi_get_architecture

Architectures, 34
amd_dbgapi_get_build_name

Versioning, 22
amd_dbgapi_get_status_string

Status Codes, 21
amd_dbgapi_get_version

Versioning, 22
amd_dbgapi_global_address_t

Basic Types, 13
AMD_DBGAPI_HANDLE_LITERAL

amd-dbgapi.h, 189
AMD_DBGAPI_IMPORT

amd-dbgapi.h, 189
amd_dbgapi_initialize

Initialization and Finalization, 24
AMD_DBGAPI_INSTRUCTION_KIND_BARRIER

Architectures, 29
AMD_DBGAPI_INSTRUCTION_KIND_DIRECT_BRANCH

Architectures, 28
AMD_DBGAPI_INSTRUCTION_KIND_DIRECT_BRANCH_CONDITIONAL

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

INDEX 209

Architectures, 28
AMD_DBGAPI_INSTRUCTION_KIND_DIRECT_CALL_REGISTER_PAIR

Architectures, 28
AMD_DBGAPI_INSTRUCTION_KIND_HALT

Architectures, 29
AMD_DBGAPI_INSTRUCTION_KIND_INDIRECT_BRANCH_CONDITIONAL_REGISTER_PAIR

Architectures, 28
AMD_DBGAPI_INSTRUCTION_KIND_INDIRECT_BRANCH_REGISTER_PAIR

Architectures, 28
AMD_DBGAPI_INSTRUCTION_KIND_INDIRECT_CALL_REGISTER_PAIRS

Architectures, 28
AMD_DBGAPI_INSTRUCTION_KIND_SEQUENTIAL

Architectures, 27
AMD_DBGAPI_INSTRUCTION_KIND_SLEEP

Architectures, 29
AMD_DBGAPI_INSTRUCTION_KIND_SPECIAL

Architectures, 29
amd_dbgapi_instruction_kind_t

Architectures, 27
AMD_DBGAPI_INSTRUCTION_KIND_TERMINATE

Architectures, 28
AMD_DBGAPI_INSTRUCTION_KIND_TRAP

Architectures, 29
AMD_DBGAPI_INSTRUCTION_KIND_UNKNOWN

Architectures, 27
amd_dbgapi_instruction_properties_t

Architectures, 29
AMD_DBGAPI_INSTRUCTION_PROPERTY_NONE

Architectures, 29
amd_dbgapi_lane_id_t

Memory, 118
AMD_DBGAPI_LANE_NONE

Memory, 118
AMD_DBGAPI_LOG_LEVEL_FATAL_ERROR

Logging, 146
AMD_DBGAPI_LOG_LEVEL_INFO

Logging, 146
AMD_DBGAPI_LOG_LEVEL_NONE

Logging, 146
amd_dbgapi_log_level_t

Logging, 145
AMD_DBGAPI_LOG_LEVEL_TRACE

Logging, 146
AMD_DBGAPI_LOG_LEVEL_VERBOSE

Logging, 146
AMD_DBGAPI_LOG_LEVEL_WARNING

Logging, 146
AMD_DBGAPI_MEMORY_PRECISION_NONE

Memory, 121
AMD_DBGAPI_MEMORY_PRECISION_PRECISE

Memory, 121
amd_dbgapi_memory_precision_t

Memory, 121
amd_dbgapi_notifier_t

Basic Types, 13
amd_dbgapi_os_agent_id_t

Basic Types, 13
amd_dbgapi_os_process_id_t

Basic Types, 13
amd_dbgapi_os_queue_id_t

Basic Types, 13
amd_dbgapi_os_queue_packet_id_t

Basic Types, 14
AMD_DBGAPI_OS_QUEUE_TYPE_AMD_PM4

Basic Types, 16
AMD_DBGAPI_OS_QUEUE_TYPE_AMD_SDMA

Basic Types, 16
AMD_DBGAPI_OS_QUEUE_TYPE_AMD_SDMA_XGMI

Basic Types, 16
AMD_DBGAPI_OS_QUEUE_TYPE_HSA_AQL

Basic Types, 16
amd_dbgapi_os_queue_type_t

Basic Types, 14
AMD_DBGAPI_OS_QUEUE_TYPE_UNKNOWN

Basic Types, 16
amd_dbgapi_prefetch_register

Registers, 108
amd_dbgapi_process_agent_list

Agents, 55
amd_dbgapi_process_attach

Processes, 40
amd_dbgapi_process_code_object_list

Code Objects, 50
amd_dbgapi_process_detach

Processes, 41
amd_dbgapi_process_dispatch_list

Dispatches, 69
amd_dbgapi_process_freeze

Generating a core dump of a process, 45
amd_dbgapi_process_get_info

Processes, 42
amd_dbgapi_process_id_t, 166

handle, 166
AMD_DBGAPI_PROCESS_INFO_CORE_STATE

Processes, 38
AMD_DBGAPI_PROCESS_INFO_NOTIFIER

Processes, 38
AMD_DBGAPI_PROCESS_INFO_OS_ID

Processes, 38
AMD_DBGAPI_PROCESS_INFO_PRECISE_ALU_EXCEPTIONS_SUPPORTED

Processes, 38
AMD_DBGAPI_PROCESS_INFO_PRECISE_MEMORY_SUPPORTED

Processes, 38
amd_dbgapi_process_info_t

Processes, 37
AMD_DBGAPI_PROCESS_INFO_WATCHPOINT_COUNT

Processes, 38
AMD_DBGAPI_PROCESS_INFO_WATCHPOINT_SHARE

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

210 INDEX

Processes, 38
amd_dbgapi_process_next_pending_event

Events, 144
AMD_DBGAPI_PROCESS_NONE

Processes, 37
amd_dbgapi_process_queue_list

Queues, 61
amd_dbgapi_process_set_progress

Processes, 43
amd_dbgapi_process_set_wave_creation

Processes, 43
amd_dbgapi_process_unfreeze

Generating a core dump of a process, 46
amd_dbgapi_process_wave_list

Wave, 81
amd_dbgapi_process_workgroup_list

Workgroup, 72
AMD_DBGAPI_PROGRESS_NO_FORWARD

Processes, 39
AMD_DBGAPI_PROGRESS_NORMAL

Processes, 39
amd_dbgapi_progress_t

Processes, 38
amd_dbgapi_queue_get_info

Queues, 62
amd_dbgapi_queue_id_t, 166

handle, 167
AMD_DBGAPI_QUEUE_INFO_ADDRESS

Queues, 60
AMD_DBGAPI_QUEUE_INFO_AGENT

Queues, 60
AMD_DBGAPI_QUEUE_INFO_ARCHITECTURE

Queues, 60
AMD_DBGAPI_QUEUE_INFO_ERROR_REASON

Queues, 60
AMD_DBGAPI_QUEUE_INFO_OS_ID

Queues, 60
AMD_DBGAPI_QUEUE_INFO_PROCESS

Queues, 60
AMD_DBGAPI_QUEUE_INFO_SIZE

Queues, 60
AMD_DBGAPI_QUEUE_INFO_STATE

Queues, 60
amd_dbgapi_queue_info_t

Queues, 60
AMD_DBGAPI_QUEUE_INFO_TYPE

Queues, 60
AMD_DBGAPI_QUEUE_NONE

Queues, 58
amd_dbgapi_queue_packet_list

Queues, 63
AMD_DBGAPI_QUEUE_STATE_ERROR

Queues, 61
amd_dbgapi_queue_state_t

Queues, 60
AMD_DBGAPI_QUEUE_STATE_VALID

Queues, 61
amd_dbgapi_read_memory

Memory, 132
amd_dbgapi_read_register

Registers, 109
AMD_DBGAPI_REGISTER_ABSENT

Registers, 102
amd_dbgapi_register_class_id_t, 167

handle, 167
AMD_DBGAPI_REGISTER_CLASS_INFO_ARCHITECTURE

Registers, 101
AMD_DBGAPI_REGISTER_CLASS_INFO_NAME

Registers, 101
amd_dbgapi_register_class_info_t

Registers, 101
AMD_DBGAPI_REGISTER_CLASS_NONE

Registers, 100
AMD_DBGAPI_REGISTER_CLASS_STATE_MEMBER

Registers, 101
AMD_DBGAPI_REGISTER_CLASS_STATE_NOT_MEMBER

Registers, 101
amd_dbgapi_register_class_state_t

Registers, 101
amd_dbgapi_register_exists_t

Registers, 101
amd_dbgapi_register_get_info

Registers, 110
amd_dbgapi_register_id_t, 168

handle, 168
AMD_DBGAPI_REGISTER_INFO_ARCHITECTURE

Registers, 102
AMD_DBGAPI_REGISTER_INFO_DWARF

Registers, 104
AMD_DBGAPI_REGISTER_INFO_NAME

Registers, 102
AMD_DBGAPI_REGISTER_INFO_PROPERTIES

Registers, 104
AMD_DBGAPI_REGISTER_INFO_SIZE

Registers, 102
amd_dbgapi_register_info_t

Registers, 102
AMD_DBGAPI_REGISTER_INFO_TYPE

Registers, 103
amd_dbgapi_register_is_in_register_class

Registers, 111
AMD_DBGAPI_REGISTER_NONE

Registers, 100
AMD_DBGAPI_REGISTER_PRESENT

Registers, 102
amd_dbgapi_register_properties_t

Registers, 104
AMD_DBGAPI_REGISTER_PROPERTY_INVALIDATE_VOLATILE

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

INDEX 211

Registers, 104
AMD_DBGAPI_REGISTER_PROPERTY_NONE

Registers, 104
AMD_DBGAPI_REGISTER_PROPERTY_READONLY_BITS

Registers, 104
AMD_DBGAPI_REGISTER_PROPERTY_VOLATILE

Registers, 104
amd_dbgapi_remove_watchpoint

Watchpoints, 96
amd_dbgapi_report_breakpoint_hit

Callbacks, 150
AMD_DBGAPI_RESUME_MODE_NORMAL

Wave, 76
AMD_DBGAPI_RESUME_MODE_SINGLE_STEP

Wave, 76
amd_dbgapi_resume_mode_t

Wave, 75
AMD_DBGAPI_RUNTIME_STATE_LOADED_ERROR_RESTRICTION

Events, 143
AMD_DBGAPI_RUNTIME_STATE_LOADED_SUCCESS

Events, 142
amd_dbgapi_runtime_state_t

Events, 142
AMD_DBGAPI_RUNTIME_STATE_UNLOADED

Events, 142
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_AGENT

Memory, 122
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_LANE

Memory, 122
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_NONE

Memory, 122
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_PROCESS

Memory, 122
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_WAVE

Memory, 122
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_WORKGROUP

Memory, 122
amd_dbgapi_segment_address_dependency_t

Memory, 121
amd_dbgapi_segment_address_t

Memory, 118
amd_dbgapi_set_alu_exceptions_precision

Memory, 134
amd_dbgapi_set_log_level

Logging, 146
amd_dbgapi_set_memory_precision

Memory, 135
amd_dbgapi_set_watchpoint

Watchpoints, 97
amd_dbgapi_size_t

Basic Types, 14
AMD_DBGAPI_STATUS_ERROR

Status Codes, 17
AMD_DBGAPI_STATUS_ERROR_ALREADY_ATTACHED

Status Codes, 19
AMD_DBGAPI_STATUS_ERROR_ALREADY_INITIALIZED

Status Codes, 18
AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_DISPLACED_STEPPING_ACTIVE

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_DISPLACED_STEPPING_BUFFER_NOT_AVAILABLE

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_ILLEGAL_INSTRUCTION

Status Codes, 19
AMD_DBGAPI_STATUS_ERROR_INCOMPATIBLE_PROCESS_STATE

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_CLASS_ID

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_SPACE_CONVERSION

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_SPACE_ID

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_INVALID_AGENT_ID

Status Codes, 19
AMD_DBGAPI_STATUS_ERROR_INVALID_ARCHITECTURE_ID

Status Codes, 19
AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT

Status Codes, 18
AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITY

Status Codes, 18
AMD_DBGAPI_STATUS_ERROR_INVALID_BREAKPOINT_ID

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_INVALID_CLIENT_PROCESS_ID

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_INVALID_CODE_OBJECT_ID

Status Codes, 19
AMD_DBGAPI_STATUS_ERROR_INVALID_DISPATCH_ID

Status Codes, 19
AMD_DBGAPI_STATUS_ERROR_INVALID_DISPLACED_STEPPING_ID

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_INVALID_ELF_AMDGPU_MACHINE

Status Codes, 19
AMD_DBGAPI_STATUS_ERROR_INVALID_EVENT_ID

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_INVALID_LANE_ID

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_ID

Status Codes, 19
AMD_DBGAPI_STATUS_ERROR_INVALID_QUEUE_ID

Status Codes, 19
AMD_DBGAPI_STATUS_ERROR_INVALID_REGISTER_CLASS_ID

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_INVALID_REGISTER_ID

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_INVALID_WATCHPOINT_ID

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

212 INDEX

Status Codes, 19
AMD_DBGAPI_STATUS_ERROR_INVALID_WORKGROUP_ID

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_MEMORY_ACCESS

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_NO_WATCHPOINT_AVAILABLE

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE

Status Codes, 18
AMD_DBGAPI_STATUS_ERROR_NOT_IMPLEMENTED

Status Codes, 18
AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED

Status Codes, 18
AMD_DBGAPI_STATUS_ERROR_NOT_SUPPORTED

Status Codes, 18
AMD_DBGAPI_STATUS_ERROR_PROCESS_ALREADY_FROZEN

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_PROCESS_EXITED

Status Codes, 19
AMD_DBGAPI_STATUS_ERROR_PROCESS_FROZEN

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_PROCESS_NOT_FROZEN

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_REGISTER_NOT_AVAILABLE

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_RESTRICTION

Status Codes, 19
AMD_DBGAPI_STATUS_ERROR_RESUME_DISPLACED_STEPPING

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_SYMBOL_NOT_FOUND

Status Codes, 20
AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_RESUMABLE

Status Codes, 19
AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_STOPPED

Status Codes, 19
AMD_DBGAPI_STATUS_ERROR_WAVE_OUTSTANDING_STOP

Status Codes, 19
AMD_DBGAPI_STATUS_ERROR_WAVE_STOPPED

Status Codes, 19
AMD_DBGAPI_STATUS_FATAL

Status Codes, 18
AMD_DBGAPI_STATUS_SUCCESS

Status Codes, 17
amd_dbgapi_status_t

Status Codes, 17
amd_dbgapi_symbolizer_id_t

Architectures, 26
AMD_DBGAPI_VERSION_0_54

Symbol Versions, 10
AMD_DBGAPI_VERSION_0_56

Symbol Versions, 10
AMD_DBGAPI_VERSION_0_58

Symbol Versions, 10
AMD_DBGAPI_VERSION_0_62

Symbol Versions, 10
AMD_DBGAPI_VERSION_0_64

Symbol Versions, 10
AMD_DBGAPI_VERSION_0_67

Symbol Versions, 10
AMD_DBGAPI_VERSION_0_68

Symbol Versions, 11
AMD_DBGAPI_VERSION_0_70

Symbol Versions, 11
AMD_DBGAPI_VERSION_0_76

Symbol Versions, 11
AMD_DBGAPI_VERSION_0_77

Symbol Versions, 11
AMD_DBGAPI_VERSION_MAJOR

Versioning, 22
AMD_DBGAPI_VERSION_MINOR

Versioning, 22
amd_dbgapi_watchpoint_get_info

Watchpoints, 98
amd_dbgapi_watchpoint_id_t, 168

handle, 169
AMD_DBGAPI_WATCHPOINT_INFO_ADDRESS

Watchpoints, 95
AMD_DBGAPI_WATCHPOINT_INFO_PROCESS

Watchpoints, 95
AMD_DBGAPI_WATCHPOINT_INFO_SIZE

Watchpoints, 95
amd_dbgapi_watchpoint_info_t

Watchpoints, 95
AMD_DBGAPI_WATCHPOINT_KIND_ALL

Watchpoints, 95
AMD_DBGAPI_WATCHPOINT_KIND_LOAD

Watchpoints, 95
AMD_DBGAPI_WATCHPOINT_KIND_RMW

Watchpoints, 95
AMD_DBGAPI_WATCHPOINT_KIND_STORE_AND_RMW

Watchpoints, 95
amd_dbgapi_watchpoint_kind_t

Watchpoints, 95
amd_dbgapi_watchpoint_list_t, 169

count, 170
watchpoint_ids, 170

AMD_DBGAPI_WATCHPOINT_NONE
Watchpoints, 95

AMD_DBGAPI_WATCHPOINT_SHARE_KIND_SHARED
Watchpoints, 96

amd_dbgapi_watchpoint_share_kind_t
Watchpoints, 95

AMD_DBGAPI_WATCHPOINT_SHARE_KIND_UNSHARED
Watchpoints, 96

AMD_DBGAPI_WATCHPOINT_SHARE_KIND_UNSUPPORTED
Watchpoints, 96

AMD_DBGAPI_WAVE_CREATION_NORMAL
Processes, 40

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

INDEX 213

AMD_DBGAPI_WAVE_CREATION_STOP
Processes, 40

amd_dbgapi_wave_creation_t
Processes, 39

amd_dbgapi_wave_get_info
Wave, 82

amd_dbgapi_wave_id_t, 170
handle, 170

AMD_DBGAPI_WAVE_INFO_AGENT
Wave, 77

AMD_DBGAPI_WAVE_INFO_ARCHITECTURE
Wave, 77

AMD_DBGAPI_WAVE_INFO_DISPATCH
Wave, 76

AMD_DBGAPI_WAVE_INFO_EXEC_MASK
Wave, 77

AMD_DBGAPI_WAVE_INFO_LANE_COUNT
Wave, 77

AMD_DBGAPI_WAVE_INFO_PC
Wave, 77

AMD_DBGAPI_WAVE_INFO_PROCESS
Wave, 77

AMD_DBGAPI_WAVE_INFO_QUEUE
Wave, 76

AMD_DBGAPI_WAVE_INFO_STATE
Wave, 76

AMD_DBGAPI_WAVE_INFO_STOP_REASON
Wave, 76

amd_dbgapi_wave_info_t
Wave, 76

AMD_DBGAPI_WAVE_INFO_WATCHPOINTS
Wave, 76

AMD_DBGAPI_WAVE_INFO_WAVE_NUMBER_IN_WORKGROUP
Wave, 77

AMD_DBGAPI_WAVE_INFO_WORKGROUP
Wave, 76

AMD_DBGAPI_WAVE_INFO_WORKGROUP_COORD
Wave, 77

AMD_DBGAPI_WAVE_NONE
Wave, 75

amd_dbgapi_wave_register_exists
Registers, 112

amd_dbgapi_wave_register_list
Registers, 112

amd_dbgapi_wave_resume
Wave, 83

AMD_DBGAPI_WAVE_STATE_RUN
Wave, 77

AMD_DBGAPI_WAVE_STATE_SINGLE_STEP
Wave, 77

AMD_DBGAPI_WAVE_STATE_STOP
Wave, 78

amd_dbgapi_wave_state_t
Wave, 77

amd_dbgapi_wave_stop
Wave, 85

AMD_DBGAPI_WAVE_STOP_REASON_ADDRESS_ERROR
Wave, 81

AMD_DBGAPI_WAVE_STOP_REASON_ASSERT_TRAP
Wave, 80

AMD_DBGAPI_WAVE_STOP_REASON_BREAKPOINT
Wave, 78

AMD_DBGAPI_WAVE_STOP_REASON_DEBUG_TRAP
Wave, 79

AMD_DBGAPI_WAVE_STOP_REASON_ECC_ERROR
Wave, 81

AMD_DBGAPI_WAVE_STOP_REASON_FATAL_HALT
Wave, 81

AMD_DBGAPI_WAVE_STOP_REASON_FP_DIVIDE_BY_0
Wave, 79

AMD_DBGAPI_WAVE_STOP_REASON_FP_INEXACT
Wave, 79

AMD_DBGAPI_WAVE_STOP_REASON_FP_INPUT_DENORMAL
Wave, 78

AMD_DBGAPI_WAVE_STOP_REASON_FP_INVALID_OPERATION
Wave, 79

AMD_DBGAPI_WAVE_STOP_REASON_FP_OVERFLOW
Wave, 79

AMD_DBGAPI_WAVE_STOP_REASON_FP_UNDERFLOW
Wave, 79

AMD_DBGAPI_WAVE_STOP_REASON_ILLEGAL_INSTRUCTION
Wave, 81

AMD_DBGAPI_WAVE_STOP_REASON_INT_DIVIDE_BY_0
Wave, 79

AMD_DBGAPI_WAVE_STOP_REASON_MEMORY_VIOLATION
Wave, 80

AMD_DBGAPI_WAVE_STOP_REASON_NONE
Wave, 78

AMD_DBGAPI_WAVE_STOP_REASON_SINGLE_STEP
Wave, 78

AMD_DBGAPI_WAVE_STOP_REASON_TRAP
Wave, 80

AMD_DBGAPI_WAVE_STOP_REASON_WATCHPOINT
Wave, 78

amd_dbgapi_wave_stop_reasons_t
Wave, 78

amd_dbgapi_workgroup_get_info
Workgroup, 73

amd_dbgapi_workgroup_id_t, 171
handle, 171

AMD_DBGAPI_WORKGROUP_INFO_AGENT
Workgroup, 71

AMD_DBGAPI_WORKGROUP_INFO_ARCHITECTURE
Workgroup, 71

AMD_DBGAPI_WORKGROUP_INFO_DISPATCH
Workgroup, 71

AMD_DBGAPI_WORKGROUP_INFO_PROCESS
Workgroup, 71

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

214 INDEX

AMD_DBGAPI_WORKGROUP_INFO_QUEUE
Workgroup, 71

amd_dbgapi_workgroup_info_t
Workgroup, 71

AMD_DBGAPI_WORKGROUP_INFO_WORKGROUP_COORD
Workgroup, 71

AMD_DBGAPI_WORKGROUP_NONE
Workgroup, 71

amd_dbgapi_write_memory
Memory, 135

amd_dbgapi_write_register
Registers, 113

Architectures, 24
amd_dbgapi_architecture_get_info, 30
AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION,

27
AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION_PC_ADJUST,

27
AMD_DBGAPI_ARCHITECTURE_INFO_BREAKPOINT_INSTRUCTION_SIZE,

27
AMD_DBGAPI_ARCHITECTURE_INFO_ELF_AMDGPU_MACHINE,

27
AMD_DBGAPI_ARCHITECTURE_INFO_LARGEST_INSTRUCTION_SIZE,

27
AMD_DBGAPI_ARCHITECTURE_INFO_MINIMUM_INSTRUCTION_ALIGNMENT,

27
AMD_DBGAPI_ARCHITECTURE_INFO_NAME, 27
AMD_DBGAPI_ARCHITECTURE_INFO_PC_REGISTER,

27
amd_dbgapi_architecture_info_t, 26
AMD_DBGAPI_ARCHITECTURE_NONE, 26
amd_dbgapi_classify_instruction, 30
amd_dbgapi_disassemble_instruction, 32
amd_dbgapi_get_architecture, 34
AMD_DBGAPI_INSTRUCTION_KIND_BARRIER,

29
AMD_DBGAPI_INSTRUCTION_KIND_DIRECT_BRANCH,

28
AMD_DBGAPI_INSTRUCTION_KIND_DIRECT_BRANCH_CONDITIONAL,

28
AMD_DBGAPI_INSTRUCTION_KIND_DIRECT_CALL_REGISTER_PAIR,

28
AMD_DBGAPI_INSTRUCTION_KIND_HALT, 29
AMD_DBGAPI_INSTRUCTION_KIND_INDIRECT_BRANCH_CONDITIONAL_REGISTER_PAIR,

28
AMD_DBGAPI_INSTRUCTION_KIND_INDIRECT_BRANCH_REGISTER_PAIR,

28
AMD_DBGAPI_INSTRUCTION_KIND_INDIRECT_CALL_REGISTER_PAIRS,

28
AMD_DBGAPI_INSTRUCTION_KIND_SEQUENTIAL,

27
AMD_DBGAPI_INSTRUCTION_KIND_SLEEP, 29
AMD_DBGAPI_INSTRUCTION_KIND_SPECIAL, 29
amd_dbgapi_instruction_kind_t, 27

AMD_DBGAPI_INSTRUCTION_KIND_TERMINATE,
28

AMD_DBGAPI_INSTRUCTION_KIND_TRAP, 29
AMD_DBGAPI_INSTRUCTION_KIND_UNKNOWN,

27
amd_dbgapi_instruction_properties_t, 29
AMD_DBGAPI_INSTRUCTION_PROPERTY_NONE,

29
amd_dbgapi_symbolizer_id_t, 26

Basic Types, 11
AMD_DBGAPI_CHANGED_NO, 14
amd_dbgapi_changed_t, 14
AMD_DBGAPI_CHANGED_YES, 14
amd_dbgapi_global_address_t, 13
amd_dbgapi_notifier_t, 13
amd_dbgapi_os_agent_id_t, 13
amd_dbgapi_os_process_id_t, 13
amd_dbgapi_os_queue_id_t, 13
amd_dbgapi_os_queue_packet_id_t, 14
AMD_DBGAPI_OS_QUEUE_TYPE_AMD_PM4, 16
AMD_DBGAPI_OS_QUEUE_TYPE_AMD_SDMA,

16
AMD_DBGAPI_OS_QUEUE_TYPE_AMD_SDMA_XGMI,

16
AMD_DBGAPI_OS_QUEUE_TYPE_HSA_AQL, 16
amd_dbgapi_os_queue_type_t, 14
AMD_DBGAPI_OS_QUEUE_TYPE_UNKNOWN, 16
amd_dbgapi_size_t, 14

Callbacks, 146
AMD_DBGAPI_BREAKPOINT_ACTION_HALT, 148
AMD_DBGAPI_BREAKPOINT_ACTION_RESUME,

148
amd_dbgapi_breakpoint_action_t, 148
amd_dbgapi_breakpoint_get_info, 149
AMD_DBGAPI_BREAKPOINT_INFO_PROCESS,

149
amd_dbgapi_breakpoint_info_t, 148
AMD_DBGAPI_BREAKPOINT_NONE, 148
amd_dbgapi_callbacks_t, 148
AMD_DBGAPI_CLIENT_PROCESS_INFO_CORE_STATE,

149
AMD_DBGAPI_CLIENT_PROCESS_INFO_OS_PID,

149
amd_dbgapi_client_process_info_t, 149
amd_dbgapi_client_thread_id_t, 148
amd_dbgapi_report_breakpoint_hit, 150

client_process_get_info
amd_dbgapi_callbacks_s, 157

Code Objects, 47
amd_dbgapi_code_object_get_info, 50
AMD_DBGAPI_CODE_OBJECT_INFO_LOAD_ADDRESS,

50

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

INDEX 215

AMD_DBGAPI_CODE_OBJECT_INFO_PROCESS,
48

amd_dbgapi_code_object_info_t, 48
AMD_DBGAPI_CODE_OBJECT_INFO_URI_NAME,

49
AMD_DBGAPI_CODE_OBJECT_NONE, 48
amd_dbgapi_process_code_object_list, 50

count
amd_dbgapi_watchpoint_list_t, 170

data
amd_dbgapi_core_state_data_t, 162

deallocate_memory
amd_dbgapi_callbacks_s, 158

DEPRECATED
amd-dbgapi.h, 189
Queues, 59
Wave, 81

Dispatches, 64
AMD_DBGAPI_DISPATCH_BARRIER_NONE, 66
AMD_DBGAPI_DISPATCH_BARRIER_PRESENT,

66
amd_dbgapi_dispatch_barrier_t, 66
AMD_DBGAPI_DISPATCH_FENCE_SCOPE_AGENT,

66
AMD_DBGAPI_DISPATCH_FENCE_SCOPE_NONE,

66
AMD_DBGAPI_DISPATCH_FENCE_SCOPE_SYSTEM,

66
amd_dbgapi_dispatch_fence_scope_t, 66
amd_dbgapi_dispatch_get_info, 68
AMD_DBGAPI_DISPATCH_INFO_ACQUIRE_FENCE,

67
AMD_DBGAPI_DISPATCH_INFO_AGENT, 67
AMD_DBGAPI_DISPATCH_INFO_ARCHITECTURE,

67
AMD_DBGAPI_DISPATCH_INFO_BARRIER, 67
AMD_DBGAPI_DISPATCH_INFO_GRID_DIMENSIONS,

67
AMD_DBGAPI_DISPATCH_INFO_GRID_SIZES, 67
AMD_DBGAPI_DISPATCH_INFO_GROUP_SEGMENT_SIZE,

67
AMD_DBGAPI_DISPATCH_INFO_KERNEL_ARGUMENT_SEGMENT_ADDRESS,

67
AMD_DBGAPI_DISPATCH_INFO_KERNEL_CODE_ENTRY_ADDRESS,

67
AMD_DBGAPI_DISPATCH_INFO_KERNEL_COMPLETION_ADDRESS,

68
AMD_DBGAPI_DISPATCH_INFO_KERNEL_DESCRIPTOR_ADDRESS,

67
AMD_DBGAPI_DISPATCH_INFO_OS_QUEUE_PACKET_ID,

67
AMD_DBGAPI_DISPATCH_INFO_PRIVATE_SEGMENT_SIZE,

67

AMD_DBGAPI_DISPATCH_INFO_PROCESS, 67
AMD_DBGAPI_DISPATCH_INFO_QUEUE, 67
AMD_DBGAPI_DISPATCH_INFO_RELEASE_FENCE,

67
amd_dbgapi_dispatch_info_t, 66
AMD_DBGAPI_DISPATCH_INFO_WORKGROUP_SIZES,

67
AMD_DBGAPI_DISPATCH_NONE, 66
amd_dbgapi_process_dispatch_list, 69

Displaced Stepping, 87
amd_dbgapi_displaced_stepping_complete, 90
amd_dbgapi_displaced_stepping_get_info, 91
AMD_DBGAPI_DISPLACED_STEPPING_INFO_PROCESS,

90
amd_dbgapi_displaced_stepping_info_t, 89
AMD_DBGAPI_DISPLACED_STEPPING_NONE, 89
amd_dbgapi_displaced_stepping_start, 92

endianness
amd_dbgapi_core_state_data_t, 162

Events, 137
amd_dbgapi_event_get_info, 143
AMD_DBGAPI_EVENT_INFO_BREAKPOINT, 140
AMD_DBGAPI_EVENT_INFO_CLIENT_THREAD,

140
AMD_DBGAPI_EVENT_INFO_KIND, 139
AMD_DBGAPI_EVENT_INFO_PROCESS, 139
AMD_DBGAPI_EVENT_INFO_QUEUE, 140
AMD_DBGAPI_EVENT_INFO_RUNTIME_STATE,

140
amd_dbgapi_event_info_t, 139
AMD_DBGAPI_EVENT_INFO_WAVE, 139
AMD_DBGAPI_EVENT_KIND_BREAKPOINT_RESUME,

141
AMD_DBGAPI_EVENT_KIND_CODE_OBJECT_LIST_UPDATED,

141
AMD_DBGAPI_EVENT_KIND_NONE, 140
AMD_DBGAPI_EVENT_KIND_QUEUE_ERROR,

142
AMD_DBGAPI_EVENT_KIND_RUNTIME, 141
amd_dbgapi_event_kind_t, 140
AMD_DBGAPI_EVENT_KIND_WAVE_COMMAND_TERMINATED,

140
AMD_DBGAPI_EVENT_KIND_WAVE_STOP, 140
AMD_DBGAPI_EVENT_NONE, 139
amd_dbgapi_event_processed, 143
amd_dbgapi_process_next_pending_event, 144
AMD_DBGAPI_RUNTIME_STATE_LOADED_ERROR_RESTRICTION,

143
AMD_DBGAPI_RUNTIME_STATE_LOADED_SUCCESS,

142
amd_dbgapi_runtime_state_t, 142
AMD_DBGAPI_RUNTIME_STATE_UNLOADED, 142

Generating a core dump of a process, 44

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

216 INDEX

amd_dbgapi_process_freeze, 45
amd_dbgapi_process_unfreeze, 46

handle
amd_dbgapi_address_class_id_t, 153
amd_dbgapi_address_space_id_t, 154
amd_dbgapi_agent_id_t, 155
amd_dbgapi_architecture_id_t, 155
amd_dbgapi_breakpoint_id_t, 156
amd_dbgapi_code_object_id_t, 161
amd_dbgapi_dispatch_id_t, 164
amd_dbgapi_displaced_stepping_id_t, 165
amd_dbgapi_event_id_t, 165
amd_dbgapi_process_id_t, 166
amd_dbgapi_queue_id_t, 167
amd_dbgapi_register_class_id_t, 167
amd_dbgapi_register_id_t, 168
amd_dbgapi_watchpoint_id_t, 169
amd_dbgapi_wave_id_t, 170
amd_dbgapi_workgroup_id_t, 171

include/amd-dbgapi/amd-dbgapi.h, 173, 189
Initialization and Finalization, 23

amd_dbgapi_finalize, 23
amd_dbgapi_initialize, 24

insert_breakpoint
amd_dbgapi_callbacks_s, 158

log_message
amd_dbgapi_callbacks_s, 159

Logging, 145
AMD_DBGAPI_LOG_LEVEL_FATAL_ERROR, 146
AMD_DBGAPI_LOG_LEVEL_INFO, 146
AMD_DBGAPI_LOG_LEVEL_NONE, 146
amd_dbgapi_log_level_t, 145
AMD_DBGAPI_LOG_LEVEL_TRACE, 146
AMD_DBGAPI_LOG_LEVEL_VERBOSE, 146
AMD_DBGAPI_LOG_LEVEL_WARNING, 146
amd_dbgapi_set_log_level, 146

Memory, 114
amd_dbgapi_address_class_get_info, 122
AMD_DBGAPI_ADDRESS_CLASS_INFO_ADDRESS_SPACE,

119
AMD_DBGAPI_ADDRESS_CLASS_INFO_DWARF,

119
AMD_DBGAPI_ADDRESS_CLASS_INFO_NAME,

119
amd_dbgapi_address_class_info_t, 119
AMD_DBGAPI_ADDRESS_CLASS_NONE, 117
AMD_DBGAPI_ADDRESS_CLASS_STATE_MEMBER,

119
AMD_DBGAPI_ADDRESS_CLASS_STATE_NOT_MEMBER,

119
amd_dbgapi_address_class_state_t, 119

amd_dbgapi_address_dependency, 123
amd_dbgapi_address_is_in_address_class, 124
AMD_DBGAPI_ADDRESS_SPACE_ACCESS_ALL,

120
AMD_DBGAPI_ADDRESS_SPACE_ACCESS_DISPATCH_CONSTANT,

120
AMD_DBGAPI_ADDRESS_SPACE_ACCESS_PROGRAM_CONSTANT,

120
amd_dbgapi_address_space_access_t, 119
amd_dbgapi_address_space_get_info, 125
AMD_DBGAPI_ADDRESS_SPACE_GLOBAL, 117
AMD_DBGAPI_ADDRESS_SPACE_INFO_ACCESS,

120
AMD_DBGAPI_ADDRESS_SPACE_INFO_ADDRESS_SIZE,

120
AMD_DBGAPI_ADDRESS_SPACE_INFO_DWARF,

120
AMD_DBGAPI_ADDRESS_SPACE_INFO_NAME,

120
AMD_DBGAPI_ADDRESS_SPACE_INFO_NULL_ADDRESS,

120
amd_dbgapi_address_space_info_t, 120
AMD_DBGAPI_ADDRESS_SPACE_NONE, 117
AMD_DBGAPI_ALU_EXCEPTIONS_PRECISION_NONE,

121
AMD_DBGAPI_ALU_EXCEPTIONS_PRECISION_PRECISE,

121
amd_dbgapi_alu_exceptions_precision_t, 120
amd_dbgapi_architecture_address_class_list, 126
amd_dbgapi_architecture_address_space_list, 127
amd_dbgapi_convert_address_space, 128
amd_dbgapi_dwarf_address_class_to_address_class,

130
amd_dbgapi_dwarf_address_space_to_address_space,

131
amd_dbgapi_lane_id_t, 118
AMD_DBGAPI_LANE_NONE, 118
AMD_DBGAPI_MEMORY_PRECISION_NONE, 121
AMD_DBGAPI_MEMORY_PRECISION_PRECISE,

121
amd_dbgapi_memory_precision_t, 121
amd_dbgapi_read_memory, 132
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_AGENT,

122
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_LANE,

122
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_NONE,

122
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_PROCESS,

122
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_WAVE,

122
AMD_DBGAPI_SEGMENT_ADDRESS_DEPENDENCE_WORKGROUP,

122

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

INDEX 217

amd_dbgapi_segment_address_dependency_t, 121
amd_dbgapi_segment_address_t, 118
amd_dbgapi_set_alu_exceptions_precision, 134
amd_dbgapi_set_memory_precision, 135
amd_dbgapi_write_memory, 135

Processes, 35
amd_dbgapi_client_process_id_t, 37
AMD_DBGAPI_ENDIAN_BIG, 37
AMD_DBGAPI_ENDIAN_LITTLE, 37
amd_dbgapi_endianness_t, 37
amd_dbgapi_process_attach, 40
amd_dbgapi_process_detach, 41
amd_dbgapi_process_get_info, 42
AMD_DBGAPI_PROCESS_INFO_CORE_STATE,

38
AMD_DBGAPI_PROCESS_INFO_NOTIFIER, 38
AMD_DBGAPI_PROCESS_INFO_OS_ID, 38
AMD_DBGAPI_PROCESS_INFO_PRECISE_ALU_EXCEPTIONS_SUPPORTED,

38
AMD_DBGAPI_PROCESS_INFO_PRECISE_MEMORY_SUPPORTED,

38
amd_dbgapi_process_info_t, 37
AMD_DBGAPI_PROCESS_INFO_WATCHPOINT_COUNT,

38
AMD_DBGAPI_PROCESS_INFO_WATCHPOINT_SHARE,

38
AMD_DBGAPI_PROCESS_NONE, 37
amd_dbgapi_process_set_progress, 43
amd_dbgapi_process_set_wave_creation, 43
AMD_DBGAPI_PROGRESS_NO_FORWARD, 39
AMD_DBGAPI_PROGRESS_NORMAL, 39
amd_dbgapi_progress_t, 38
AMD_DBGAPI_WAVE_CREATION_NORMAL, 40
AMD_DBGAPI_WAVE_CREATION_STOP, 40
amd_dbgapi_wave_creation_t, 39

Queues, 56
AMD_DBGAPI_EXCEPTION_NONE, 58
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_CODE_INVALID,

59
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_DIM_INVALID,

59
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_GROUP_SEGMENT_SIZE_INVALID,

59
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_REGISTER_COUNT_TOO_LARGE,

59
AMD_DBGAPI_EXCEPTION_PACKET_DISPATCH_WORKGROUP_SIZE_INVALID,

59
AMD_DBGAPI_EXCEPTION_PACKET_UNSUPPORTED,

59
AMD_DBGAPI_EXCEPTION_PACKET_VENDOR_UNSUPPORTED,

59
AMD_DBGAPI_EXCEPTION_QUEUE_PREEMPTION_ERROR,

60

AMD_DBGAPI_EXCEPTION_WAVE_ABORT, 58
AMD_DBGAPI_EXCEPTION_WAVE_ADDRESS_ERROR,

59
AMD_DBGAPI_EXCEPTION_WAVE_ILLEGAL_INSTRUCTION,

59
AMD_DBGAPI_EXCEPTION_WAVE_MATH_ERROR,

59
AMD_DBGAPI_EXCEPTION_WAVE_MEMORY_VIOLATION,

59
AMD_DBGAPI_EXCEPTION_WAVE_TRAP, 58
amd_dbgapi_exceptions_t, 58
amd_dbgapi_process_queue_list, 61
amd_dbgapi_queue_get_info, 62
AMD_DBGAPI_QUEUE_INFO_ADDRESS, 60
AMD_DBGAPI_QUEUE_INFO_AGENT, 60
AMD_DBGAPI_QUEUE_INFO_ARCHITECTURE,

60
AMD_DBGAPI_QUEUE_INFO_ERROR_REASON,

60
AMD_DBGAPI_QUEUE_INFO_OS_ID, 60
AMD_DBGAPI_QUEUE_INFO_PROCESS, 60
AMD_DBGAPI_QUEUE_INFO_SIZE, 60
AMD_DBGAPI_QUEUE_INFO_STATE, 60
amd_dbgapi_queue_info_t, 60
AMD_DBGAPI_QUEUE_INFO_TYPE, 60
AMD_DBGAPI_QUEUE_NONE, 58
amd_dbgapi_queue_packet_list, 63
AMD_DBGAPI_QUEUE_STATE_ERROR, 61
amd_dbgapi_queue_state_t, 60
AMD_DBGAPI_QUEUE_STATE_VALID, 61
DEPRECATED, 59

Registers, 99
amd_dbgapi_architecture_register_class_get_info,

104
amd_dbgapi_architecture_register_class_list, 105
amd_dbgapi_architecture_register_list, 106
amd_dbgapi_dwarf_register_to_register, 107
amd_dbgapi_prefetch_register, 108
amd_dbgapi_read_register, 109
AMD_DBGAPI_REGISTER_ABSENT, 102
AMD_DBGAPI_REGISTER_CLASS_INFO_ARCHITECTURE,

101
AMD_DBGAPI_REGISTER_CLASS_INFO_NAME,

101
amd_dbgapi_register_class_info_t, 101
AMD_DBGAPI_REGISTER_CLASS_NONE, 100
AMD_DBGAPI_REGISTER_CLASS_STATE_MEMBER,

101
AMD_DBGAPI_REGISTER_CLASS_STATE_NOT_MEMBER,

101
amd_dbgapi_register_class_state_t, 101
amd_dbgapi_register_exists_t, 101
amd_dbgapi_register_get_info, 110

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

218 INDEX

AMD_DBGAPI_REGISTER_INFO_ARCHITECTURE,
102

AMD_DBGAPI_REGISTER_INFO_DWARF, 104
AMD_DBGAPI_REGISTER_INFO_NAME, 102
AMD_DBGAPI_REGISTER_INFO_PROPERTIES,

104
AMD_DBGAPI_REGISTER_INFO_SIZE, 102
amd_dbgapi_register_info_t, 102
AMD_DBGAPI_REGISTER_INFO_TYPE, 103
amd_dbgapi_register_is_in_register_class, 111
AMD_DBGAPI_REGISTER_NONE, 100
AMD_DBGAPI_REGISTER_PRESENT, 102
amd_dbgapi_register_properties_t, 104
AMD_DBGAPI_REGISTER_PROPERTY_INVALIDATE_VOLATILE,

104
AMD_DBGAPI_REGISTER_PROPERTY_NONE,

104
AMD_DBGAPI_REGISTER_PROPERTY_READONLY_BITS,

104
AMD_DBGAPI_REGISTER_PROPERTY_VOLATILE,

104
amd_dbgapi_wave_register_exists, 112
amd_dbgapi_wave_register_list, 112
amd_dbgapi_write_register, 113

remove_breakpoint
amd_dbgapi_callbacks_s, 159

saved_return_address_register
amd_dbgapi_direct_call_register_pair_information_t,

163
size

amd_dbgapi_core_state_data_t, 162
Status Codes, 16

amd_dbgapi_get_status_string, 21
AMD_DBGAPI_STATUS_ERROR, 17
AMD_DBGAPI_STATUS_ERROR_ALREADY_ATTACHED,

19
AMD_DBGAPI_STATUS_ERROR_ALREADY_INITIALIZED,

18
AMD_DBGAPI_STATUS_ERROR_CLIENT_CALLBACK,

20
AMD_DBGAPI_STATUS_ERROR_DISPLACED_STEPPING_ACTIVE,

20
AMD_DBGAPI_STATUS_ERROR_DISPLACED_STEPPING_BUFFER_NOT_AVAILABLE,

20
AMD_DBGAPI_STATUS_ERROR_ILLEGAL_INSTRUCTION,

19
AMD_DBGAPI_STATUS_ERROR_INCOMPATIBLE_PROCESS_STATE,

20
AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_CLASS_ID,

20
AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_SPACE_CONVERSION,

20

AMD_DBGAPI_STATUS_ERROR_INVALID_ADDRESS_SPACE_ID,
20

AMD_DBGAPI_STATUS_ERROR_INVALID_AGENT_ID,
19

AMD_DBGAPI_STATUS_ERROR_INVALID_ARCHITECTURE_ID,
19

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT,
18

AMD_DBGAPI_STATUS_ERROR_INVALID_ARGUMENT_COMPATIBILITY,
18

AMD_DBGAPI_STATUS_ERROR_INVALID_BREAKPOINT_ID,
20

AMD_DBGAPI_STATUS_ERROR_INVALID_CLIENT_PROCESS_ID,
20

AMD_DBGAPI_STATUS_ERROR_INVALID_CODE_OBJECT_ID,
19

AMD_DBGAPI_STATUS_ERROR_INVALID_DISPATCH_ID,
19

AMD_DBGAPI_STATUS_ERROR_INVALID_DISPLACED_STEPPING_ID,
20

AMD_DBGAPI_STATUS_ERROR_INVALID_ELF_AMDGPU_MACHINE,
19

AMD_DBGAPI_STATUS_ERROR_INVALID_EVENT_ID,
20

AMD_DBGAPI_STATUS_ERROR_INVALID_LANE_ID,
20

AMD_DBGAPI_STATUS_ERROR_INVALID_PROCESS_ID,
19

AMD_DBGAPI_STATUS_ERROR_INVALID_QUEUE_ID,
19

AMD_DBGAPI_STATUS_ERROR_INVALID_REGISTER_CLASS_ID,
20

AMD_DBGAPI_STATUS_ERROR_INVALID_REGISTER_ID,
20

AMD_DBGAPI_STATUS_ERROR_INVALID_WATCHPOINT_ID,
20

AMD_DBGAPI_STATUS_ERROR_INVALID_WAVE_ID,
19

AMD_DBGAPI_STATUS_ERROR_INVALID_WORKGROUP_ID,
20

AMD_DBGAPI_STATUS_ERROR_MEMORY_ACCESS,
20

AMD_DBGAPI_STATUS_ERROR_NO_WATCHPOINT_AVAILABLE,
20

AMD_DBGAPI_STATUS_ERROR_NOT_AVAILABLE,
18

AMD_DBGAPI_STATUS_ERROR_NOT_IMPLEMENTED,
18

AMD_DBGAPI_STATUS_ERROR_NOT_INITIALIZED,
18

AMD_DBGAPI_STATUS_ERROR_NOT_SUPPORTED,
18

AMD_DBGAPI_STATUS_ERROR_PROCESS_ALREADY_FROZEN,
20

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

INDEX 219

AMD_DBGAPI_STATUS_ERROR_PROCESS_EXITED,
19

AMD_DBGAPI_STATUS_ERROR_PROCESS_FROZEN,
20

AMD_DBGAPI_STATUS_ERROR_PROCESS_NOT_FROZEN,
20

AMD_DBGAPI_STATUS_ERROR_REGISTER_NOT_AVAILABLE,
20

AMD_DBGAPI_STATUS_ERROR_RESTRICTION,
19

AMD_DBGAPI_STATUS_ERROR_RESUME_DISPLACED_STEPPING,
20

AMD_DBGAPI_STATUS_ERROR_SYMBOL_NOT_FOUND,
20

AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_RESUMABLE,
19

AMD_DBGAPI_STATUS_ERROR_WAVE_NOT_STOPPED,
19

AMD_DBGAPI_STATUS_ERROR_WAVE_OUTSTANDING_STOP,
19

AMD_DBGAPI_STATUS_ERROR_WAVE_STOPPED,
19

AMD_DBGAPI_STATUS_FATAL, 18
AMD_DBGAPI_STATUS_SUCCESS, 17
amd_dbgapi_status_t, 17

Symbol Versions, 9
AMD_DBGAPI_VERSION_0_54, 10
AMD_DBGAPI_VERSION_0_56, 10
AMD_DBGAPI_VERSION_0_58, 10
AMD_DBGAPI_VERSION_0_62, 10
AMD_DBGAPI_VERSION_0_64, 10
AMD_DBGAPI_VERSION_0_67, 10
AMD_DBGAPI_VERSION_0_68, 11
AMD_DBGAPI_VERSION_0_70, 11
AMD_DBGAPI_VERSION_0_76, 11
AMD_DBGAPI_VERSION_0_77, 11

target_address
amd_dbgapi_direct_call_register_pair_information_t,

163

Versioning, 21
amd_dbgapi_get_build_name, 22
amd_dbgapi_get_version, 22
AMD_DBGAPI_VERSION_MAJOR, 22
AMD_DBGAPI_VERSION_MINOR, 22

watchpoint_ids
amd_dbgapi_watchpoint_list_t, 170

Watchpoints, 93
amd_dbgapi_remove_watchpoint, 96
amd_dbgapi_set_watchpoint, 97
amd_dbgapi_watchpoint_get_info, 98
AMD_DBGAPI_WATCHPOINT_INFO_ADDRESS,

95

AMD_DBGAPI_WATCHPOINT_INFO_PROCESS,
95

AMD_DBGAPI_WATCHPOINT_INFO_SIZE, 95
amd_dbgapi_watchpoint_info_t, 95
AMD_DBGAPI_WATCHPOINT_KIND_ALL, 95
AMD_DBGAPI_WATCHPOINT_KIND_LOAD, 95
AMD_DBGAPI_WATCHPOINT_KIND_RMW, 95
AMD_DBGAPI_WATCHPOINT_KIND_STORE_AND_RMW,

95
amd_dbgapi_watchpoint_kind_t, 95
AMD_DBGAPI_WATCHPOINT_NONE, 95
AMD_DBGAPI_WATCHPOINT_SHARE_KIND_SHARED,

96
amd_dbgapi_watchpoint_share_kind_t, 95
AMD_DBGAPI_WATCHPOINT_SHARE_KIND_UNSHARED,

96
AMD_DBGAPI_WATCHPOINT_SHARE_KIND_UNSUPPORTED,

96
Wave, 73

amd_dbgapi_process_wave_list, 81
AMD_DBGAPI_RESUME_MODE_NORMAL, 76
AMD_DBGAPI_RESUME_MODE_SINGLE_STEP,

76
amd_dbgapi_resume_mode_t, 75
amd_dbgapi_wave_get_info, 82
AMD_DBGAPI_WAVE_INFO_AGENT, 77
AMD_DBGAPI_WAVE_INFO_ARCHITECTURE, 77
AMD_DBGAPI_WAVE_INFO_DISPATCH, 76
AMD_DBGAPI_WAVE_INFO_EXEC_MASK, 77
AMD_DBGAPI_WAVE_INFO_LANE_COUNT, 77
AMD_DBGAPI_WAVE_INFO_PC, 77
AMD_DBGAPI_WAVE_INFO_PROCESS, 77
AMD_DBGAPI_WAVE_INFO_QUEUE, 76
AMD_DBGAPI_WAVE_INFO_STATE, 76
AMD_DBGAPI_WAVE_INFO_STOP_REASON, 76
amd_dbgapi_wave_info_t, 76
AMD_DBGAPI_WAVE_INFO_WATCHPOINTS, 76
AMD_DBGAPI_WAVE_INFO_WAVE_NUMBER_IN_WORKGROUP,

77
AMD_DBGAPI_WAVE_INFO_WORKGROUP, 76
AMD_DBGAPI_WAVE_INFO_WORKGROUP_COORD,

77
AMD_DBGAPI_WAVE_NONE, 75
amd_dbgapi_wave_resume, 83
AMD_DBGAPI_WAVE_STATE_RUN, 77
AMD_DBGAPI_WAVE_STATE_SINGLE_STEP, 77
AMD_DBGAPI_WAVE_STATE_STOP, 78
amd_dbgapi_wave_state_t, 77
amd_dbgapi_wave_stop, 85
AMD_DBGAPI_WAVE_STOP_REASON_ADDRESS_ERROR,

81
AMD_DBGAPI_WAVE_STOP_REASON_ASSERT_TRAP,

80
AMD_DBGAPI_WAVE_STOP_REASON_BREAKPOINT,

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

220 INDEX

78
AMD_DBGAPI_WAVE_STOP_REASON_DEBUG_TRAP,

79
AMD_DBGAPI_WAVE_STOP_REASON_ECC_ERROR,

81
AMD_DBGAPI_WAVE_STOP_REASON_FATAL_HALT,

81
AMD_DBGAPI_WAVE_STOP_REASON_FP_DIVIDE_BY_0,

79
AMD_DBGAPI_WAVE_STOP_REASON_FP_INEXACT,

79
AMD_DBGAPI_WAVE_STOP_REASON_FP_INPUT_DENORMAL,

78
AMD_DBGAPI_WAVE_STOP_REASON_FP_INVALID_OPERATION,

79
AMD_DBGAPI_WAVE_STOP_REASON_FP_OVERFLOW,

79
AMD_DBGAPI_WAVE_STOP_REASON_FP_UNDERFLOW,

79
AMD_DBGAPI_WAVE_STOP_REASON_ILLEGAL_INSTRUCTION,

81
AMD_DBGAPI_WAVE_STOP_REASON_INT_DIVIDE_BY_0,

79
AMD_DBGAPI_WAVE_STOP_REASON_MEMORY_VIOLATION,

80
AMD_DBGAPI_WAVE_STOP_REASON_NONE, 78
AMD_DBGAPI_WAVE_STOP_REASON_SINGLE_STEP,

78
AMD_DBGAPI_WAVE_STOP_REASON_TRAP, 80
AMD_DBGAPI_WAVE_STOP_REASON_WATCHPOINT,

78
amd_dbgapi_wave_stop_reasons_t, 78
DEPRECATED, 81

Workgroup, 70
amd_dbgapi_process_workgroup_list, 72
amd_dbgapi_workgroup_get_info, 73
AMD_DBGAPI_WORKGROUP_INFO_AGENT, 71
AMD_DBGAPI_WORKGROUP_INFO_ARCHITECTURE,

71
AMD_DBGAPI_WORKGROUP_INFO_DISPATCH,

71
AMD_DBGAPI_WORKGROUP_INFO_PROCESS,

71
AMD_DBGAPI_WORKGROUP_INFO_QUEUE, 71
amd_dbgapi_workgroup_info_t, 71
AMD_DBGAPI_WORKGROUP_INFO_WORKGROUP_COORD,

71
AMD_DBGAPI_WORKGROUP_NONE, 71

xfer_global_memory
amd_dbgapi_callbacks_s, 160

Generated on Thu Jul 24 2025 15:00:42 for AMD_DBGAPI by Doxygen

	1 AMD Debugger API Specification
	1.1 Introduction
	1.2 AMD GPU Execution Model
	1.3 Supported AMD GPU Architectures
	1.4 Known Limitations and Restrictions
	1.5 References
	1.6 Legal Disclaimer and Copyright Information

	2 Topic Documentation
	2.1 Symbol Versions
	2.1.1 Detailed Description
	2.1.2 Macro Definition Documentation
	2.1.2.1 AMD_DBGAPI_VERSION_0_54
	2.1.2.2 AMD_DBGAPI_VERSION_0_56
	2.1.2.3 AMD_DBGAPI_VERSION_0_58
	2.1.2.4 AMD_DBGAPI_VERSION_0_62
	2.1.2.5 AMD_DBGAPI_VERSION_0_64
	2.1.2.6 AMD_DBGAPI_VERSION_0_67
	2.1.2.7 AMD_DBGAPI_VERSION_0_68
	2.1.2.8 AMD_DBGAPI_VERSION_0_70
	2.1.2.9 AMD_DBGAPI_VERSION_0_76
	2.1.2.10 AMD_DBGAPI_VERSION_0_77

	2.2 Basic Types
	2.2.1 Detailed Description
	2.2.2 Typedef Documentation
	2.2.2.1 amd_dbgapi_global_address_t
	2.2.2.2 amd_dbgapi_notifier_t
	2.2.2.3 amd_dbgapi_os_agent_id_t
	2.2.2.4 amd_dbgapi_os_process_id_t
	2.2.2.5 amd_dbgapi_os_queue_id_t
	2.2.2.6 amd_dbgapi_os_queue_packet_id_t
	2.2.2.7 amd_dbgapi_size_t

	2.2.3 Enumeration Type Documentation
	2.2.3.1 amd_dbgapi_changed_t
	2.2.3.2 amd_dbgapi_os_queue_type_t

	2.3 Status Codes
	2.3.1 Detailed Description
	2.3.2 Enumeration Type Documentation
	2.3.2.1 amd_dbgapi_status_t

	2.3.3 Function Documentation
	2.3.3.1 amd_dbgapi_get_status_string()

	2.4 Versioning
	2.4.1 Detailed Description
	2.4.2 Macro Definition Documentation
	2.4.2.1 AMD_DBGAPI_VERSION_MAJOR
	2.4.2.2 AMD_DBGAPI_VERSION_MINOR

	2.4.3 Function Documentation
	2.4.3.1 amd_dbgapi_get_build_name()
	2.4.3.2 amd_dbgapi_get_version()

	2.5 Initialization and Finalization
	2.5.1 Detailed Description
	2.5.2 Function Documentation
	2.5.2.1 amd_dbgapi_finalize()
	2.5.2.2 amd_dbgapi_initialize()

	2.6 Architectures
	2.6.1 Detailed Description
	2.6.2 Macro Definition Documentation
	2.6.2.1 AMD_DBGAPI_ARCHITECTURE_NONE

	2.6.3 Typedef Documentation
	2.6.3.1 amd_dbgapi_symbolizer_id_t

	2.6.4 Enumeration Type Documentation
	2.6.4.1 amd_dbgapi_architecture_info_t
	2.6.4.2 amd_dbgapi_instruction_kind_t
	2.6.4.3 amd_dbgapi_instruction_properties_t

	2.6.5 Function Documentation
	2.6.5.1 amd_dbgapi_architecture_get_info()
	2.6.5.2 amd_dbgapi_classify_instruction()
	2.6.5.3 amd_dbgapi_disassemble_instruction()
	2.6.5.4 amd_dbgapi_get_architecture()

	2.7 Processes
	2.7.1 Detailed Description
	2.7.2 Macro Definition Documentation
	2.7.2.1 AMD_DBGAPI_PROCESS_NONE

	2.7.3 Typedef Documentation
	2.7.3.1 amd_dbgapi_client_process_id_t

	2.7.4 Enumeration Type Documentation
	2.7.4.1 amd_dbgapi_endianness_t
	2.7.4.2 amd_dbgapi_process_info_t
	2.7.4.3 amd_dbgapi_progress_t
	2.7.4.4 amd_dbgapi_wave_creation_t

	2.7.5 Function Documentation
	2.7.5.1 amd_dbgapi_process_attach()
	2.7.5.2 amd_dbgapi_process_detach()
	2.7.5.3 amd_dbgapi_process_get_info()
	2.7.5.4 amd_dbgapi_process_set_progress()
	2.7.5.5 amd_dbgapi_process_set_wave_creation()

	2.7.6 Generating a core dump of a process
	2.7.6.1 Detailed Description
	2.7.6.2 Function Documentation

	2.8 Code Objects
	2.8.1 Detailed Description
	2.8.2 Macro Definition Documentation
	2.8.2.1 AMD_DBGAPI_CODE_OBJECT_NONE

	2.8.3 Enumeration Type Documentation
	2.8.3.1 amd_dbgapi_code_object_info_t

	2.8.4 Function Documentation
	2.8.4.1 amd_dbgapi_code_object_get_info()
	2.8.4.2 amd_dbgapi_process_code_object_list()

	2.9 Agents
	2.9.1 Detailed Description
	2.9.2 Macro Definition Documentation
	2.9.2.1 AMD_DBGAPI_AGENT_NONE

	2.9.3 Enumeration Type Documentation
	2.9.3.1 amd_dbgapi_agent_info_t
	2.9.3.2 amd_dbgapi_agent_state_t

	2.9.4 Function Documentation
	2.9.4.1 amd_dbgapi_agent_get_info()
	2.9.4.2 amd_dbgapi_process_agent_list()

	2.10 Queues
	2.10.1 Detailed Description
	2.10.2 Macro Definition Documentation
	2.10.2.1 AMD_DBGAPI_QUEUE_NONE

	2.10.3 Enumeration Type Documentation
	2.10.3.1 amd_dbgapi_exceptions_t
	2.10.3.2 amd_dbgapi_queue_info_t
	2.10.3.3 amd_dbgapi_queue_state_t

	2.10.4 Function Documentation
	2.10.4.1 amd_dbgapi_process_queue_list()
	2.10.4.2 amd_dbgapi_queue_get_info()
	2.10.4.3 amd_dbgapi_queue_packet_list()

	2.11 Dispatches
	2.11.1 Detailed Description
	2.11.2 Macro Definition Documentation
	2.11.2.1 AMD_DBGAPI_DISPATCH_NONE

	2.11.3 Enumeration Type Documentation
	2.11.3.1 amd_dbgapi_dispatch_barrier_t
	2.11.3.2 amd_dbgapi_dispatch_fence_scope_t
	2.11.3.3 amd_dbgapi_dispatch_info_t

	2.11.4 Function Documentation
	2.11.4.1 amd_dbgapi_dispatch_get_info()
	2.11.4.2 amd_dbgapi_process_dispatch_list()

	2.12 Workgroup
	2.12.1 Detailed Description
	2.12.2 Macro Definition Documentation
	2.12.2.1 AMD_DBGAPI_WORKGROUP_NONE

	2.12.3 Enumeration Type Documentation
	2.12.3.1 amd_dbgapi_workgroup_info_t

	2.12.4 Function Documentation
	2.12.4.1 amd_dbgapi_process_workgroup_list()
	2.12.4.2 amd_dbgapi_workgroup_get_info()

	2.13 Wave
	2.13.1 Detailed Description
	2.13.2 Macro Definition Documentation
	2.13.2.1 AMD_DBGAPI_WAVE_NONE

	2.13.3 Enumeration Type Documentation
	2.13.3.1 amd_dbgapi_resume_mode_t
	2.13.3.2 amd_dbgapi_wave_info_t
	2.13.3.3 amd_dbgapi_wave_state_t
	2.13.3.4 amd_dbgapi_wave_stop_reasons_t

	2.13.4 Function Documentation
	2.13.4.1 amd_dbgapi_process_wave_list()
	2.13.4.2 amd_dbgapi_wave_get_info()
	2.13.4.3 amd_dbgapi_wave_resume()
	2.13.4.4 amd_dbgapi_wave_stop()

	2.14 Displaced Stepping
	2.14.1 Detailed Description
	2.14.2 Macro Definition Documentation
	2.14.2.1 AMD_DBGAPI_DISPLACED_STEPPING_NONE

	2.14.3 Enumeration Type Documentation
	2.14.3.1 amd_dbgapi_displaced_stepping_info_t

	2.14.4 Function Documentation
	2.14.4.1 amd_dbgapi_displaced_stepping_complete()
	2.14.4.2 amd_dbgapi_displaced_stepping_get_info()
	2.14.4.3 amd_dbgapi_displaced_stepping_start()

	2.15 Watchpoints
	2.15.1 Detailed Description
	2.15.2 Macro Definition Documentation
	2.15.2.1 AMD_DBGAPI_WATCHPOINT_NONE

	2.15.3 Enumeration Type Documentation
	2.15.3.1 amd_dbgapi_watchpoint_info_t
	2.15.3.2 amd_dbgapi_watchpoint_kind_t
	2.15.3.3 amd_dbgapi_watchpoint_share_kind_t

	2.15.4 Function Documentation
	2.15.4.1 amd_dbgapi_remove_watchpoint()
	2.15.4.2 amd_dbgapi_set_watchpoint()
	2.15.4.3 amd_dbgapi_watchpoint_get_info()

	2.16 Registers
	2.16.1 Detailed Description
	2.16.2 Macro Definition Documentation
	2.16.2.1 AMD_DBGAPI_REGISTER_CLASS_NONE
	2.16.2.2 AMD_DBGAPI_REGISTER_NONE

	2.16.3 Enumeration Type Documentation
	2.16.3.1 amd_dbgapi_register_class_info_t
	2.16.3.2 amd_dbgapi_register_class_state_t
	2.16.3.3 amd_dbgapi_register_exists_t
	2.16.3.4 amd_dbgapi_register_info_t
	2.16.3.5 amd_dbgapi_register_properties_t

	2.16.4 Function Documentation
	2.16.4.1 amd_dbgapi_architecture_register_class_get_info()
	2.16.4.2 amd_dbgapi_architecture_register_class_list()
	2.16.4.3 amd_dbgapi_architecture_register_list()
	2.16.4.4 amd_dbgapi_dwarf_register_to_register()
	2.16.4.5 amd_dbgapi_prefetch_register()
	2.16.4.6 amd_dbgapi_read_register()
	2.16.4.7 amd_dbgapi_register_get_info()
	2.16.4.8 amd_dbgapi_register_is_in_register_class()
	2.16.4.9 amd_dbgapi_wave_register_exists()
	2.16.4.10 amd_dbgapi_wave_register_list()
	2.16.4.11 amd_dbgapi_write_register()

	2.17 Memory
	2.17.1 Detailed Description
	2.17.2 Macro Definition Documentation
	2.17.2.1 AMD_DBGAPI_ADDRESS_CLASS_NONE
	2.17.2.2 AMD_DBGAPI_ADDRESS_SPACE_GLOBAL
	2.17.2.3 AMD_DBGAPI_ADDRESS_SPACE_NONE
	2.17.2.4 AMD_DBGAPI_LANE_NONE

	2.17.3 Typedef Documentation
	2.17.3.1 amd_dbgapi_lane_id_t
	2.17.3.2 amd_dbgapi_segment_address_t

	2.17.4 Enumeration Type Documentation
	2.17.4.1 amd_dbgapi_address_class_info_t
	2.17.4.2 amd_dbgapi_address_class_state_t
	2.17.4.3 amd_dbgapi_address_space_access_t
	2.17.4.4 amd_dbgapi_address_space_info_t
	2.17.4.5 amd_dbgapi_alu_exceptions_precision_t
	2.17.4.6 amd_dbgapi_memory_precision_t
	2.17.4.7 amd_dbgapi_segment_address_dependency_t

	2.17.5 Function Documentation
	2.17.5.1 amd_dbgapi_address_class_get_info()
	2.17.5.2 amd_dbgapi_address_dependency()
	2.17.5.3 amd_dbgapi_address_is_in_address_class()
	2.17.5.4 amd_dbgapi_address_space_get_info()
	2.17.5.5 amd_dbgapi_architecture_address_class_list()
	2.17.5.6 amd_dbgapi_architecture_address_space_list()
	2.17.5.7 amd_dbgapi_convert_address_space()
	2.17.5.8 amd_dbgapi_dwarf_address_class_to_address_class()
	2.17.5.9 amd_dbgapi_dwarf_address_space_to_address_space()
	2.17.5.10 amd_dbgapi_read_memory()
	2.17.5.11 amd_dbgapi_set_alu_exceptions_precision()
	2.17.5.12 amd_dbgapi_set_memory_precision()
	2.17.5.13 amd_dbgapi_write_memory()

	2.18 Events
	2.18.1 Detailed Description
	2.18.2 Macro Definition Documentation
	2.18.2.1 AMD_DBGAPI_EVENT_NONE

	2.18.3 Enumeration Type Documentation
	2.18.3.1 amd_dbgapi_event_info_t
	2.18.3.2 amd_dbgapi_event_kind_t
	2.18.3.3 amd_dbgapi_runtime_state_t

	2.18.4 Function Documentation
	2.18.4.1 amd_dbgapi_event_get_info()
	2.18.4.2 amd_dbgapi_event_processed()
	2.18.4.3 amd_dbgapi_process_next_pending_event()

	2.19 Logging
	2.19.1 Detailed Description
	2.19.2 Enumeration Type Documentation
	2.19.2.1 amd_dbgapi_log_level_t

	2.19.3 Function Documentation
	2.19.3.1 amd_dbgapi_set_log_level()

	2.20 Callbacks
	2.20.1 Detailed Description
	2.20.2 Macro Definition Documentation
	2.20.2.1 AMD_DBGAPI_BREAKPOINT_NONE

	2.20.3 Typedef Documentation
	2.20.3.1 amd_dbgapi_callbacks_t
	2.20.3.2 amd_dbgapi_client_thread_id_t

	2.20.4 Enumeration Type Documentation
	2.20.4.1 amd_dbgapi_breakpoint_action_t
	2.20.4.2 amd_dbgapi_breakpoint_info_t
	2.20.4.3 amd_dbgapi_client_process_info_t

	2.20.5 Function Documentation
	2.20.5.1 amd_dbgapi_breakpoint_get_info()
	2.20.5.2 amd_dbgapi_report_breakpoint_hit()

	3 Data Structure Documentation
	3.1 amd_dbgapi_address_class_id_t Struct Reference
	3.1.1 Detailed Description
	3.1.2 Field Documentation
	3.1.2.1 handle

	3.2 amd_dbgapi_address_space_id_t Struct Reference
	3.2.1 Detailed Description
	3.2.2 Field Documentation
	3.2.2.1 handle

	3.3 amd_dbgapi_agent_id_t Struct Reference
	3.3.1 Detailed Description
	3.3.2 Field Documentation
	3.3.2.1 handle

	3.4 amd_dbgapi_architecture_id_t Struct Reference
	3.4.1 Detailed Description
	3.4.2 Field Documentation
	3.4.2.1 handle

	3.5 amd_dbgapi_breakpoint_id_t Struct Reference
	3.5.1 Detailed Description
	3.5.2 Field Documentation
	3.5.2.1 handle

	3.6 amd_dbgapi_callbacks_s Struct Reference
	3.6.1 Detailed Description
	3.6.2 Field Documentation
	3.6.2.1 allocate_memory
	3.6.2.2 client_process_get_info
	3.6.2.3 deallocate_memory
	3.6.2.4 insert_breakpoint
	3.6.2.5 log_message
	3.6.2.6 remove_breakpoint
	3.6.2.7 xfer_global_memory

	3.7 amd_dbgapi_code_object_id_t Struct Reference
	3.7.1 Detailed Description
	3.7.2 Field Documentation
	3.7.2.1 handle

	3.8 amd_dbgapi_core_state_data_t Struct Reference
	3.8.1 Detailed Description
	3.8.2 Field Documentation
	3.8.2.1 data
	3.8.2.2 endianness
	3.8.2.3 size

	3.9 amd_dbgapi_direct_call_register_pair_information_t Struct Reference
	3.9.1 Detailed Description
	3.9.2 Field Documentation
	3.9.2.1 saved_return_address_register
	3.9.2.2 target_address

	3.10 amd_dbgapi_dispatch_id_t Struct Reference
	3.10.1 Detailed Description
	3.10.2 Field Documentation
	3.10.2.1 handle

	3.11 amd_dbgapi_displaced_stepping_id_t Struct Reference
	3.11.1 Detailed Description
	3.11.2 Field Documentation
	3.11.2.1 handle

	3.12 amd_dbgapi_event_id_t Struct Reference
	3.12.1 Detailed Description
	3.12.2 Field Documentation
	3.12.2.1 handle

	3.13 amd_dbgapi_process_id_t Struct Reference
	3.13.1 Detailed Description
	3.13.2 Field Documentation
	3.13.2.1 handle

	3.14 amd_dbgapi_queue_id_t Struct Reference
	3.14.1 Detailed Description
	3.14.2 Field Documentation
	3.14.2.1 handle

	3.15 amd_dbgapi_register_class_id_t Struct Reference
	3.15.1 Detailed Description
	3.15.2 Field Documentation
	3.15.2.1 handle

	3.16 amd_dbgapi_register_id_t Struct Reference
	3.16.1 Detailed Description
	3.16.2 Field Documentation
	3.16.2.1 handle

	3.17 amd_dbgapi_watchpoint_id_t Struct Reference
	3.17.1 Detailed Description
	3.17.2 Field Documentation
	3.17.2.1 handle

	3.18 amd_dbgapi_watchpoint_list_t Struct Reference
	3.18.1 Detailed Description
	3.18.2 Field Documentation
	3.18.2.1 count
	3.18.2.2 watchpoint_ids

	3.19 amd_dbgapi_wave_id_t Struct Reference
	3.19.1 Detailed Description
	3.19.2 Field Documentation
	3.19.2.1 handle

	3.20 amd_dbgapi_workgroup_id_t Struct Reference
	3.20.1 Detailed Description
	3.20.2 Field Documentation
	3.20.2.1 handle

	4 File Documentation
	4.1 include/amd-dbgapi/amd-dbgapi.h File Reference
	4.1.1 Detailed Description
	4.1.2 Macro Definition Documentation
	4.1.2.1 AMD_DBGAPI
	4.1.2.2 AMD_DBGAPI_CALL
	4.1.2.3 AMD_DBGAPI_EXPORT
	4.1.2.4 AMD_DBGAPI_HANDLE_LITERAL
	4.1.2.5 AMD_DBGAPI_IMPORT
	4.1.2.6 DEPRECATED

	4.2 amd-dbgapi.h

	Index

