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1 Introduction

BSV (Bluespec SystemVerilog) is aimed at hardware designers who are using or expect to use Verilog
[IEE05], VHDL [IEE(2], SystemVerilog [IEE13], or SystemC [IEE12] to design ASICs or FPGAs. It
is also aimed at people creating synthesizable models, transactors, and verification components to
run on FPGA emulation platforms. BSV substantially extends the design subset of SystemVerilog,
including SystemVerilog types, modules, module instantiation, interfaces, interface instantiation,
parameterization, static elaboration, and “generate” elaboration. BSV can significantly improve the
hardware designer’s productivity with some key innovations:

o It expresses synthesizable behavior with Rules instead of synchronous always blocks. Rules
are powerful concepts for achieving correct concurrency and eliminating race conditions. Each
rule can be viewed as a declarative assertion expressing a potential atomic state transition.
Although rules are expressed in a modular fashion, a rule may span multiple modules, i.e., it
can test and affect the state in multiple modules. Rules need not be disjoint, i.e., two rules
can read and write common state elements. The BSV compiler produces efficient RTL code
that manages all the potential interactions between rules by inserting appropriate arbitration
and scheduling logic, logic that would otherwise have to be designed and coded manually. The
atomicity of rules gives a scalable way to avoid unwanted concurrency (races) in large designs.

e It enables more powerful generate-like elaboration. This is made possible because in BSV,
actions, rules, modules, interfaces and functions are all first-class objects. BSV also has more
general type parameterization (polymorphism). These enable the designer to “compute with
design fragments,” i.e., to reuse designs and to glue them together in much more flexible ways.
This leads to much greater succinctness and correctness.

e It provides formal semantics, enabling formal verification and formal design-by-refinement.
BSV rules are based on Term Rewriting Systems, a clean formalism supported by decades
of theoretical research in the computer science community [Ter03]. This, together with a
judicious choice of a design subset of SystemVerilog, makes programs in BSV amenable to
formal reasoning.

This reference guide is meant to be a stand-alone reference for BSV, i.e., it fully describes the subset
of Verilog and SystemVerilog used in BSV. It is not intended to be a tutorial for the beginner. A
reader with a working knowledge of Verilog 1995 or Verilog 2001 should be able to read this manual
easily. Prior knowledge of SystemVerilog is not required.

1.1 Libraries and the Standard Prelude

This reference guide focuses on the BSV language (syntax and semantics). However, as with most
languages, that is only part of the story; the utility of a language depends equally on the libraries
that come with it.

A separate document, Bluespec Compiler (BSC) Libraries Reference Guide [BL05],* describes li-
braries (BSV packages) that come with bsc and are useful across a broad range of hardware designs.
A part of those libraries, called the Standard Prelude, is automatically imported into every BSV
design because it contains universally useful basic definitions.

The Libraries Reference Guide is extensive (over 300 pages) and ever-growing as new libraries are
added to the repository. The libraries include many useful data types, many kinds of registers, wires
and FIFOs; register files; BRAMs and memory interaces; Vectors; math functions; pseudo-random

Thttps://github.com/B-Lang-org/bsc/tree/main/doc/libraries_ref_guide
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number generators; counters; interconnects; facilities for multiple Clock and Reset domains, and
more.

Another repository, bsc-contrib?, contains more libraries contributed by various people. These are
offered “as-is”, i.e., they are not part of bsc’s continuous-integration regression tests.

1.2 BSV and BH

BSV (Bluespec System Verilog) and BH (Bluespec Haskell, or Bluespec Classic) are actually just two
different syntaxes for the same language (exactly the same semantics; just two alternative parsers in
the bsc compiler).® A design project can freely mix packages from the two languages (.bsv and .bs
files, respectively). BSV code is “SystemVerilog-ish” and BH code is “Haskell-ish” in flavor; choosing
between them is largely a matter of personal preference. Note however, there are currently (Spring
2022) a few language features that are only available in BSV and not yet in BH; we hope to eliminate
this gap over time.

1.3 Meta notation for grammar

The grammar in this document is given using an extended BNF (Backus-Naur Form). Grammar
alternatives are separated by a vertical bar (“|”). ITtems enclosed in square brackets (“[ ]7) are
optional. Ttems enclosed in curly braces (“{ }”) can be repeated zero or more times.

Another BNF extension is parameterization. For example, a moduleStmt can be a modulelf, and an
actionStmt can be an actionlf. A modulelf and an actionlf are almost identical; the only difference
is that the former can contain (recursively) moduleStmts whereas the latter can contain actionStmis.
Instead of tediously repeating the grammar for modulelf and actionlf, we parameterize it by giving
a single grammar for <ctzt>If, where <ctzt> is either module or action. In the productions for
<ctzt>If, we call for <ctxt>Stmt which, therefore, either represents a moduleStmt or an actionStmd,
depending on the context in which it is used.

1.4 Overview of Program Structure

The sections that follow in this Reference Guide are organized according to the structure of the
grammar of BSV. For a newcomer to BSV, that organization may not quickly convey an intuition or
mental model of program structure and where each part fits. In this section we provide a top-down
overview of BSV program structure so that the reader can locate where each grammatical construct
may appear within a complete BSV program.

A complete BSV program is a collection of files, where each file contains one BSV package. One
package may import another, making the top-level identifiers of the latter visible and usable in the
former. Figure 1 shows the structure of a sample program.

Figure 2 shows the kind of top-level constructs one may find in a BSV package. Section 3 describes
packages, and Section 3.1 provides more detail about scopes, controlling the import and export of
names, and resolving name clashes.

Figure 3 shows what goes into an interface declaration (Section 5.2). These are method declarations
and sub-interface declarations (since interfaces can be nested hierarchically).

Figure 4 shows what goes into a module declaration (Section 5.3). These are value, function
and (sub)-module declarations and definitions, (sub-)module instantiations, rules, and definitions
of methods and sub-interfaces implemented (offered) by the module.

Figure 5 shows what goes into a rule (Section 5.6). Each rule has a rule condition and a rule body

%https://github.com/B-Lang-org/bsc-contrib/tree/main/Libraries
3See Appendix B for a brief history of how this came to be.
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File Foo.bsv

package Foo;

Code here can

endpackage:

import Baz ::

import Glurph :: *;

« identifiers defined here in Foo
* Identifiers defined in Baz, Glurph

r

use:

Foo

Figure 1:

File Foo.bsv "/’7

/

File Baz.bsv

package Baz;

... top-level definitions ...

endpackage

File Glurph.bsv

package Glurph;

e

import Frym :: *;

Code here can use:
* identifiers defined here
in Glurph
* |dentifiers defined in Frym

endpackage

File Frym.bsv
package Frym;

endpackage

Typically, some “imports” refer to
packages in the BSV library

Unlike C, there is no special “main”
name for your top-level module;
the name is specified to the bsc
compiler on the command line

For simulation, a top-level module
typically has the “Empty” interface

Overall structure of a BSV program.

File name and package name must match; bsc

will complain if they do not.

package Foo; «—

import Baz :: *;

export a, b;
typedef struct {..} S;

interface Foo IFC;

endInterface

UInt #(16) a = 23;

function int f (int x);

endfunction

module mkFoo (..);

endmodule

endpackage: Foo

A

‘\
‘\

‘\

The package/endpackage lines are optional; bsc
will use the filename if they are absent.

. import/export statements
-

type declarations

-
| —————— interface declarations

value (constant) declarations

function declarations

module declarations

Figure 2: Contents of a BSV package.
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type parameters
interface name

s N
interface Foo_IFC #(numeric type n, type t); Action method declarations

(methods can have arguments)
method Action ml1 (int x, Bool y);

method ActionValue #(int) m2 (.. args ..); « — actionValue method declaration

method int m3 (.. args ..); ~—— _ \Value method declarations (return

. . ) type is not Action or ActionValue)
interface Put #(int) i4;

endInterface

sub-interface declarations

Figure 3: Contents of a BSV interface declaration.

module name  module parameters module interface

L <"

module Foo IFC #(int n) (Foo_ IFC);

UInt #(16) a = 23; Value (constant) declarations
and definitions
Reg #(int) x <- mkReg (10); - Moadule instantiations

Switch #(4,4) switch <- mkSwitch;
function int fz (.); -  ———— Function declarations
endfunction

rule ri_ri (..); <

Rules
endrule
method Action m1 (int x, Bool y);
——————————— Method definitions

endme thod

interface i4; EES e —
Sub-interface definitions

endinterface
endmodule

Figure 4: Contents of a BSV module declaration.
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rule condition (“explicit condition”)

rule name \\

I8 N
rule rl req A (rg_running && (rg nA < rg_n) & (rg_nA == rg_nB)); Value definitions
(“single-assignments")

Req_I req = Req {command:READ, addr:rg_addr_A};
An Action
(here, an Action method invocation)

f_memReqs.enq (req);
rg_nA <= rg_nA + 1;

rg_addr_A <= rg_addr_A + 4; TwoAcriops
endrule (here, register assignments,

which are also just Action
method invocations with
special syntax)

Figure 5: Contents of a BSV rule.

containing local definitions and actions which perform the semantic actions of the rule. Actions are
typically invocations of methods in other modules.

Figure 6 shows what goes into an interface method definition (Section 5.5). These are similar in

method condition (“implicit condition”
method name j( p )

N

\
method ActionValue#(t) get () if (xs[0]==1 && (rg_inj == n));
let new xs = shiftInAtN (readVReg (xs), tagged Invalid); « vajue definitions

writeVReg (xs, new_Xxs); (“single-assignments”)
if (xs[1] == 1)

rg_inj <= 0; Actions
return x0; (only in Action and ActionValue methods,

endmethod \ not in Value methods)

return statements (only in Value and ActionValue methods; not in Action methods)

Figure 6: Contents of a BSV method definition (in a module).
structure to rules containing a condition and a body (in fact, a method definition is semantically a
fragment of a rule that invokes it).

All of the above describe the tertual structure of a BSV program. When compiled to hardware,
it undergoes static elaboration: an instance of the top-level module instantiates its sub-modules,
in turn, instantiate their sub-modules, and so on, recursively, forming a tree structure (a nesting
structure). This struucture is illustrated in Figure 7

2 Lexical elements

BSV has the same basic lexical elements as Verilog.

2.1 Whitespace and comments

Spaces, tabs, newlines, formfeeds, and carriage returns all constitute whitespace. They may be used
freely between all lexical tokens.

A comment is treated as whitespace (it can only occur between, and never within, any lexical token).
A one-line comment starts with // and ends with a newline. A block comment begins with /* and
ends with */ and may span any number of lines.

13
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method invocation
from a method

methods =
\\

il

AN

interfaces
~
[

Figure 7: The (fixed) hardware strucuture of a BSV program after static elaboration.

(4

rules . .
method invocation

from a rule

Comments do not nest. In a one-line comment, the character sequences //, /* and */ have no special
significance. In a block comment, the character sequences // and /* have no special significance.

2.2 Identifiers and keywords

An identifier in BSV consists of any sequence of letters, digits, dollar signs $ and underscore char-
acters (_). Identifiers are case-sensitive: glurph, gluRph and Glurph are three distinct identifiers.
The first character cannot be a digit.

BSV currently requires a certain capitalization convention for the first letter in an identifier. Identi-
fiers used for package names, type names, enumeration labels, union members and type classes must
begin with a capital letter. In the syntax, we use the non-terminal Identifier to refer to these. Other
identifiers (including names of variables, modules, interfaces, etc.) must begin with a lowercase letter
and, in the syntax, we use the non-terminal identifier to refer to these.

As in Verilog, identifiers whose first character is $ are reserved for so-called system tasks and functions
(see Section 13.8).

If the first character of an instance name is an underscore, (_), the compiler will not generate
this instance in the Verilog hierarchy name. This can be useful for removing submodules from the
hierarchical naming.

There are a number of keywords that are essentially reserved identifiers, i.e., they cannot be used by
the programmer as identifiers. Keywords generally do not use uppercase letters (the only exception
is the keyword value0f). BSV includes all keywords in SystemVerilog. All keywords are listed in
Appendix A.

The types Action and ActionValue are special, and cannot be redefined.

2.3 Integer literals

Integer literals are written with the usual Verilog and C notations:

14
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intLiteral n= 0’1

| sizedIntLiteral

| unsizedIntLiteral
sizedIntLiteral w= bitWidth baseLiteral
unsizedIntLiteral == [ sign | baseLiteral

| [ sign | decNum

baseLiteral == (°d | ’D) decDigitsUnderscore
| (°h | ’H) hexDigitsUnderscore
| (o ’0) octDigitsUnderscore
| (°b| ’B) binDigitsUnderscore

decNum = decDigits | decDigitsUnderscore |

bit Width == decDigits

sign n= o+ -

decDigits x={0..9}

decDigitsUnderscore == {0...9, _ }

hexDigitsUnderscore == {0..9,a...f,A...F, _}

octDigitsUnderscore = {0..7, _ }

binDigitsUnderscore == { 0,1, _ }

An integer literal is a sized integer literal if a specific bitWidth is given (e.g., 8’0255). There is no
leading sign (+ or -) in the syntax for sized integer literals; instead we provide unary prefix + or
- operators that can be used in front of any integer expression, including literals (see Section 10).
An optional sign (+ or -) is part of the syntax for unsized literals so that it is possible to construct
negative constants whose negation is not in the range of the type being constructed (e.g. Int#(4)
x = -8; since 8 is not a valid Int#(4), but -8 is).

Examples:

125

-16

’h48454a
32°h48454a
870255
12°b101010
32°h_FF_FF_FF_FF

2.3.1 Type conversion of integer literals

Integer literals can be used to specify values for various integer types and even for user-defined
types. BSV uses its systematic overloading resolution mechanism to perform these type conversions.
Overloading resolution is described in more detail in Section 8.

An integer literal is a sized literal if a specific bitWidth is given (e.g., 8’0255), in which case
the literal is assumed to have type bit [w — 1:0]. The compiler implicitly applies the function
fromSizedInteger to the literal to convert it to the type required by the context. Thus, sized
literals can be used for any type on which the overloaded function fromSizedInteger is defined,
i.e., for the types Bit, UInt and Int. The function fromSizedInteger is part of the SizedLiteral
typeclass, described in Libraries Reference Guide.
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If the literal is an unsized integer literal (a specific bitWidth is not given), the literal is assumed
to have type Integer. The compiler implicitly applies the overloaded function fromInteger to the
literal to convert it to the type required by the context. Thus, unsized literals can be used for any
type on which the overloaded function fromInteger is defined. The function fromInteger is part
of the Literal typeclass, described in Libraries Reference Guide.

The literal >0 just stands for 0. The literal ’1 stands for a value in which all bits are 1 (the width
depends on the context).

2.4 Real literals

Real number literals are written with the usual Verilog notation:

realLiteral = decNum]| .decDigitsUnderscore | exp | sign | decDigitsUnderscore
| decNum.decDigitsUnderscore

sign =+|-

exp =e|E

decNum = decDigits | decDigitsUnderscore ]
decDigits ={0.9}

decDigitsUnderscore = {0...9, _ }

There is no leading sign (+ or =) in the syntax for real literals. Instead, we provide the unary prefix
+ and - operators that can be used in front of any expression, including real literals (Section 10).

If the real literal contains a decimal point, there must be digits following the decimal point. An
exponent can start with either an E or an e, followed by an optional sign (+ or -), followed by digits.
There cannot be an exponent or a sign without any digits. Any of the numeric components may
include an underscore, but an underscore cannot be the first digit of the real literal.

Unlike integer literals, real literals are of limited precision. They are represented as IEEE floating
point numbers of 64 bit length, as defined by the IEEE standard.

Examples:

1.2
0.6
2.4E10 // exponent can be e or E
5e-3

325.761_452_e-10 // underscores are ignored
9.2e+4

2.4.1 Type conversion of real literals

Real literals can be used to specify values for real types. By default, real literals are assumed to
have the type Real. BSV uses its systematic overloading resolution mechanism to perform these type
conversions. Overloading resolution is described in more detail in Section 8. There are additional
functions defined for Real types, provided in the Real package described in Libraries Reference
Guide.

The function fromReal (described in Libraries Reference Guide) converts a value of type Real into
a value of another datatype. Whenever you write a real literal in BSV (such as 3.14), there is an
implied fromReal applied to it, which turns the real into the specified type. By defining an instance
of RealLiteral for a datatype, you can create values of that type from real literals.
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The type FixedPoint, defined in the FixedPoint package, defines a type for representing fixed
point numbers. The FixedPoint type has an instance of RealLiteral defined for it and contains
functions for operating on fixed-point real numbers.

2.5 String literals

String literals are written enclosed in double quotes "---" and must be contained on a single source
line.
stringLiteral = " ...string characters --- "

Special characters may be inserted in string literals with the following backslash escape sequences:

\n newline

\t tab

\\ backslash

\" double quote
\v vertical tab
\f form feed

\a bell

\OOO exactly 3 octal digits (8-bit character code)
\xHH exactly 2 hexadecimal digits (8-bit character code)

Example - printing characters using form feed.
module mkPrinter (Empty);
String display_value;

display_value = "a\nb\nc"; //prints a
// b
// c repeatedly

rule every;
$display(display_value) ;
endrule
endmodule

2.5.1 Type conversion of string literals

String literals are used to specify values for string types. BSV uses its systematic overloading
resolution mechanism to perform these type conversions. Overloading resolution is described in
more detail in Section 8.

Whenever you write a string literal in BSV there is an implicit fromString applied to it, which
defaults to type String.

2.6 Don’t-care values

A lone question mark ? is treated as a special don’t-care value. For example, one may return ?
from an arm of a case statement that is known to be unreachable.

Example - Using 7 as a don’t-care value
module mkExample (Empty) ;

Reg# (Bit#(8)) r <- mkReg(?); // don’t-care is used for the
rule every; // reset value of the Reg
$display("value is %h", r); // the value of r is displayed
endrule
endmodule
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2.7 Compiler directives

The following compiler directives permit file inclusion, macro definition and substitution, and condi-
tional compilation. They follow the specifications given in the Verilog 2001 LRM plus the extensions
given in the SystemVerilog 3.1a LRM.

In general, these compiler directives can appear anywhere in the source text. In particular, they do
not need to be on lines by themselves, and they need not begin in the first column. Of course, they
should not be inside strings or comments, where the text remains uninterpreted.

2.7.1 File inclusion: ‘include and ‘line

compilerDirective == ‘include "filename"
| ‘include <filename>
| ‘include macrolnvocation

In an ‘include directive, the contents of the named file are inserted in place of this line. The
included files may themselves contain compiler directives. Currently there is no difference between
the "..." and <...> forms. A macrolnvocation should expand to one of the other two forms. The
file name may be absolute, or relative to the current directory.

compilerDirective = ‘line lineNumber "filename" level
lineNumber == decLiteral
level x= 0]1]2

A ‘line directive is terminated by a newline, i.e., it cannot have any other source text after the level.
The compiler automatically keeps track of the source file name and line number for every line of
source text (including from included source files), so that error messages can be properly correlated to
the source. This directive effectively overrides the compiler’s internal tracking mechanism, forcing
it to regard the next line onwards as coming from the given source file and line number. It is
generally not necessary to use this directive explicitly; it is mainly intended to be generated by other
preprocessors that may themselves need to alter the source files before passing them through the
BSV compiler; this mechanism allows proper references to the original source.

The level specifier is either 0, 1 or 2:

e 1 indicates that an include file has just been entered
e 2 indicates that an include file has just been exited

e 0 is used in all other cases

2.7.2 Macro definition and substitution: ‘define and related directives

compilerDirective = ‘define macroName [ ( macroFormals ) | macroText
macroName = didentifier
macroFormals n= identifier { , identifier }

The ‘define directive is terminated by a bare newline. A backslash (\) just before a newline
continues the directive into the next line. When the macro text is substituted, each such continuation
backslash-newline is replaced by a newline.

The macroName is an identifier and may be followed by formal arguments, which are a list of
comma-separated identifiers in parentheses. For both the macro name and the formals, lower and
upper case are acceptable (but case is distinguished). The macroName cannot be any of the compiler
directives (such as include, define, ...).
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The scope of the formal arguments extends to the end of the macroText.

The macroText represents almost arbitrary text that is to be substituted in place of invocations of
this macro. The macroText can be empty.

One-line comments (i.e., beginning with //) may appear in the macroText; these are not considered
part of the substitutable text and are removed during substitution. A one-line comment that is not
on the last line of a ‘define directive is terminated by a backslash-newline instead of a newline.

A block comment (/*...*/) is removed during substitution and replaced by a single space.

The macroText can also contain the following special escape sequences:

o ‘1 Indicates that a double-quote (") should be placed in the expanded text.

o ‘\" Indicates that a backslash and a double-quote (\") should be placed in the expanded
text.

o ¢ Indicates that there should be no whitespace between the preceding and following

text. This allows construction of identifiers from the macro arguments.

A minimal amount of lexical analysis of macroText is done to identify comments, string literals,
identifiers representing macro formals, and macro invocations. As described earlier, one-line com-
ments are removed. The text inside string literals is not interpreted except for the usual string
escape sequences described in Section 2.5.

There are two define-macros in the define environment initially; ‘bluespec and ‘BLUESPEC.

Once defined, a macro can be invoked anywhere in the source text (including within other macro
definitions) using the following syntax.

compilerDirective 2= macrolnvocation
macrolnvocation == “macroName [ ( macroActuals ) |
macroActuals = substText { , substText }

The macroName must refer to a macro definition available at expansion time. The macroActuals,
if present, consist of substitution text substText that is arbitrary text, possibly spread over multiple
lines, excluding commas. A minimal amount of parsing of this substitution text is done, so that
commas that are not at the top level are not interpreted as the commas separating macroActuals.
Examples of such “inner” uninterpreted commas are those within strings and within comments.

compilerDirective = ‘undef macroName
| ‘resetall

The ‘undef directive’s effect is that the specified macro (with or without formal arguments) is no
longer defined for the subsequent source text. Of course, it can be defined again with ‘define in the
subsequent text. The ‘resetall directive has the effect of undefining all currently defined macros,
i.e., there are no macros defined in the subsequent source text.

2.7.3 Conditional compilation: ‘ifdef and related directives

compilerDirective = ‘ifdef macroName
| ‘ifndef macroName
| ‘elsif macroName
| ‘else
| ‘endif

These directives are used together in either an ‘ifdef-endif sequence or an ifndef-endif sequence.
In either case, the sequence can contain zero or more elsif directives followed by zero or one else
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directives. These sequences can be nested, i.e., each ‘ifdef or ifndef introduces a new, nested
sequence until a corresponding endif.

In an ‘ifdef sequence, if the macroName is currently defined, the subsequent text is processed until
the next corresponding elsif, else or endif. All text from that next corresponding elsif or else
is ignored until the endif.

If the macroName is currently not defined, the subsequent text is ignored until the next corresponding
‘elsif, ‘else or ‘endif. If the next corresponding directive is an ‘elsif, it is treated just as if it
were an ‘ifdef at that point.

If the ‘ifdef and all its corresponding ‘elsifs fail (macros were not defined), and there is an ‘else
present, then the text between the ‘else and ‘endif is processed.

An ‘ifndef sequence is just like an ‘ifdef sequence, except that the sense of the first test is
inverted, i.e., its following text is processes if the macroName is not defined, and its ‘elsif and
‘else arms are considered only if the macro is defined.

Example using ‘ifdef to determine the size of a register:

‘ifdef USE_16_BITS

Reg#(Bit#(16)) a_reg <- mkReg(0);
‘else

Reg#(Bit#(8)) a_reg <- mkReg(0);
‘endif

3 Packages and the outermost structure of a BSV design

A BSV program consists of one or more outermost constructs called packages. All BSV code is
assumed to be inside a package. Further, the BSV compiler and other tools assume that there is
one package per file, and they use the package name to derive the file name. For example, a package
called Foo is assumed to be located in a file Foo.bsv.

A BSV package is purely a linguistic namespace-management mechanism and is particularly useful
for programming in the large, so that the author of a package can choose identifiers for the package
components freely without worrying about choices made by authors of other packages. Package
structure is usually uncorrelated with hardware structure, which is specified by the module construct.

A package contains a collection of top-level statements that include specifications of what it imports
from other packages, what it exports to other packages, and its definitions of types, interfaces,
functions, variables, and modules. BSV tools ensure that when a package is compiled, all the
packages that it imports have already been compiled.

package = package packagelde ;
{ exportDecl }
{ importDecl }
{ packageStmt }
endpackage | : packagelde |
exportDecl = export exportitem { , exportltem } ;
exportltem = ddentifier [ (..) ]
| Identifier [ (..) ]
| packagelde :: *

importDecl = import importltem { , importltem } ;
importltem = packagelde :: *
packageStmt = moduleDef

| interfaceDecl
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| typeDef

| varDecl | varAssign

| JunctionDef

| typeclassDef

| typeclassinstanceDef
| externModuleImport

packagelde == Identifier

The name of the package is the identifier following the package keyword. This name can optionally
be repeated after the endpackage keyword (and a colon). We recommend using an uppercase first
letter in package names. In fact, the package and endpackage lines are optional: if they are absent,
BSV derives the assumed package name from the filename.

An export item can specify an identifier defined elsewhere within the package, making the identifier
accessible oustside the package. An export item can also specify an identifier from an imported
package. In that case, the imported identifier is re-exported from this package, so that it is accessible
by importing this package (without requiring the import of its source package). It is also possible
to re-export all of the identifiers from an imported package by using the following syntax: export
packagelde: :*.

If there are any export statements in a package, then only those items are exported. If there are
no export statements, by default all identifiers defined in this package (and no identifiers from any
imported packages) are exported.

If the exported identifier is the name of a struct (structure) or union type definition, then the
members of that type will be visible only if (..) is used. By omitting the (..) suffix, only the
type, but not its members, are visible outside the package. This is a way to define abstract data
types, i.e., types whose internal structure is hidden. When the exported identifier is not a structure
or union type definition, the (..) has no effect on the exported identifier.

Each import item specifies a package from which to import identifiers, i.e., to make them visible
locally within this package. For each imported package, all identifiers exported from that package
are made locally visible.

Example:
package Foo;
export Xx;
export y;
import Bar::*;
... top level definition ...
... top level definition ...
... top level definition ...
endpackage: Foo
Here, Foo is the name of this package. The identifiers x and y, which must be defined by the top-level

definitions in this package are names exported from this package. From package Bar we import all

its definitions. To export all identifiers from packages Foo and Bar, add the statement: export Foo
Dok

3.1 Scopes, name clashes and qualified identifiers

BSV uses standard static scoping (also known as lexical scoping). Many constructs introduce new
scopes nested inside their surrounding scopes. Identifiers can be declared inside nested scopes. Any
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use of an identifier refers to its declaration in the nearest textually surrounding scope. Thus, an
identifier x declared in a nested scope “shadows”; or hides, any declaration of x in surrounding scopes.
We recommend, however, that the programmer avoids such shadowing, because it often makes code
more difficult to read.

Packages form the the outermost scopes. Examples of nested scopes include modules, interfaces,
functions, methods, rules, action and actionvalue blocks, begin-end statements and expressions,
bodies of for and while loops, and seq and par blocks.

When used in any scope, an identifier must have an unambiguous meaning. If there is name clash
for an identifier « because it is defined in the current package and/or it is available from one or more
imported packages, then the ambiguity can be resolved by using a qualified name of the form P :: x
to refer to the version of  contained in package P.

3.2 Importing the Standard Prelude and Libraries

The Standard Prelude is imported implicitly into every BSV package; there is no explicit import
statement. All other library packages need an import statement.

Although not a requirement, as a matter of good style we recommend against using any of the
Standard Prelude names for new definitions in your programs. That would require the entity’s name
to be qualified with the package name, and may also be confusing to others who read the code.

4 Types

BSV provides a strong, static type-checking environment; every variable and every expression in
BSV has a type. Variables must be assigned values which have compatible types. Type checking,
which occurs before program elaboration or execution, ensures that object types are compatible and
applied functions are valid for the context and type.

Data types in BSV are case sensitive. The first character of a type is almost always uppercase, the
only exceptions being the types int and bit for compatibility with Verilog.

The syntax of types (type expressions) is given below:

type n= typePrimary

| typePrimary (C type { , type }) Function type
typePrimary n= typelde [ # ( type { , type } ) ]

| typeNat

|  bit [ typeNat : typeNat ]
typelde == Identifier
typeNat == decDigits
The Libraries Reference Guide describes the Prelude package, which defines many common datatypes,

and the Foundation library packages which define many more datatypes. And, users can define new
types (Section 7). The following tables list some of the more commonly used types.
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Common Bit Types Defined in Prelude (Libraries Reference Guide)
Bit types are synthesizable
Type \ Description
Bit#(n) Polymorphic data type containing n bits
UInt#(n) Unsigned fixed-width representation of an integer
value of n bits
Int#(n) Signed fixed-width representation of an integer
value of n bit
Bool Type which can have two values, True or False
Maybe Used to tag values as Valid or Invalid, where
valid values contain data
Tuples Predefined structures which group a small number
of values together
Common Non-Bit Types Defined in Prelude (Libraries Reference Guide)
Type Description
Integer Non-synthesizable data type used for integer val-
ues and functions
Real Non-synthesizable data type which can represent
numbers with a fractional component
String, Char Data type representing string literals
Fmt Representation of arguments to the $display fam-
ily of tasks
Common Interface Types Defined in Prelude and Foundation Library Packages
Type | Description
Reg Register interface
FIFO FIFO interfaces
Clock Abstract type with a oscillator and a gate
Reset Abstract type for a reset
Inout Type used to pass Verilog inouts through a BSV
module
Types Used by the Compiler
Type \ Description
Action An expression intended to act on the state of the
circuit
ActionValue An expression intended to act on the state of the
circuit
Rules Used to represent one or more rules as a first class
type
Module A hardware module containing sub-modules, rules
and an interface
Examples of simple types:
Integer // Unbounded signed integers, for static elaboration only
int // 32-bit signed integers
Bool
String
Action
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Type expressions of the form X#(t1,---,tx) are called parameterized types. X is called a type
constructor and the types t1,- - -ty are the parameters of X. Examples:

Tuple2#(int,Bool) // pair of items, an int and a Bool
Tuple3#(int,Bool,String) // triple of items, an int, a Bool and a String
List#(Bool) // list containing booleans

List#(List#(Bool)) // list containing lists of booleans

RegFile#(Integer, String) // a register file (array) indexed by integers, containing strings

Type parameters can be natural numbers (also known as numeric types). These usually indicate
some aspect of the size of the type, such as a bit-width or a table capacity. Examples:

Bit#(16) // 16-bit wide bit-vector (16 is a numeric type)
bit [15:0] // synonym for Bit#(16)

UInt#(32) // unsigned integers, 32 bits wide

Int#(29) // signed integers, 29 bits wide

Vector#(16,Int#(29) // Vector of size 16 containing Int#(29)’s

Currently the second index n in a bit[m:n] type must be 0. The type bit[m:0] represents the
type of bit vectors, with bits indexed from m (msb/left) down through 0 (Isb/right), for m > 0.

Type parameters can also be strings (known as string types). These are not common, but are quite
useful in the generics library, described in the Libraries Reference Guide. Examples:

MetaData#("Prelude","Maybe",PrimUnit,2)
MetaConsNamed#("Valid",1,1)

4.1 Polymorphism

A type can be polymorphic. This is indicated by using type variables as parameters. Examples:

List#(a) // lists containing items of some type a
List#(List#(b)) // lists containing lists of items of some type b
RegFile#(i, List#(x)) // arrays indexed by some type i, containing

// lists that contain items of some type x

The type variables represent unknown (but specific) types. In other words, List#(a) represents
the type of a list containing items all of which have some type a. It does not mean that different
elements of a list can have different types.

4.2 Provisos (brief intro)

Provisos are described in detail in Section 8.1, and the general facility of type classes (overloading
groups), of which provisos form a part, is described in Section 8. Here we provide a brief description,
which is adequate for most uses and for continuity in a serial reading of this manual.

A proviso is a static condition attached to certain constructs, to impose certain restrictions on the
types involved in the construct. The restrictions are of two kinds:

e Require instance of a type class (overloading group): this kind of proviso states that certain
types must be instances of certain type classes, i.e., that certain overloaded functions are
defined on this type.
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e Require size relationships: this kind of proviso expresses certain constraints between the sizes
of certain types.

The most common overloading provisos are:

Bits#(t,n)

Eq#(t)

Literal#(t)

Ord#(t)

Bounded# (t)

Bitwise#(t)

// Type class (overloading group) Bits
// Meaning: overloaded operators pack/unpack are defined
// on type t to convert to/from Bit#(n)

// Type class (overloading group) Eq
// Meaning: overloaded operators == and != are defined on type t

// Type class (overloading group) Literal
// Meaning: Overloaded function fromInteger() defined on type t

// to convert an integer literal to type t. Also overloaded
// function inLiteralRange to determine if an Integer
// is in the range of the target type t.

// Type class (overloading group) Ord
// Meaning: Overloaded order-comparison operators <, <=,
// > and >= are defined on type t

// Type class (overloading group) Bounded
// Meaning: Overloaded identifiers minBound and maxBound
// are defined for type t

// Type class (overloading group) Bitwise
// Meaning: Overloaded operators &, |, =, °7, °7, 7, << and >>
// and overloaded function invert are defined on type t

BitReduction#(t)// Type class (overloading group) BitReduction

BitExtend#(t)

Arith#(t)

// Meaning: Overloaded prefix operators &, |, ~,
// “&, “|, 77, and "~ are defined on type t

// Type class (overloading group) BitExtend
// Meaning: Overloaded functions extend, zeroExtend, signExtend

// and truncate are defined on type t

// Type class (overloading group) Arith

// Meaning: Overloaded operators +, -, and *, and overloaded
// prefix operator - (same as function negate), and
// overloaded function negate are defined on type t

The size relationship provisos are:

Add#(n1,n2,n3)
Mul#(nl,n2,n3)
Div#(nl,n2,n3)
Max#(n1,n2,n3)

Log#(n1,n2)

// Meaning: assert nl + n2 = n3

// Meaning: assert nl * n2 = n3

// Meaning: assert ceiling nl / n2 = n3
// Meaning: assert max(nl,n2) = n3

// Meaning: assert ceiling(log(nl)) = n2
// The logarithm is base 2

25



Reference Guide BSV

Example:

module mkExample (ProvideCurrent#(a))
provisos(Bits#(a, sa), Arith#(a));

Reg#(a) value_reg <- mkReg(?); // requires that type "a" be in the Bits typeclass.
rule every;

value_reg <= value_reg + 1; // requires that type "a" be in the Arith typeclass.
endrule

Example:

function Bit#(m) pad0101 (Bit#(n) x)
provisos (Add#(n,4,m)); // m is 4 bits longer than n
pad0101 = { x, 0b0101 };

endfunction: pad0101

This defines a function pad0101 that takes a bit vector x and pads it to the right with the four bits
“0101” using the standard bit-concatenation notation. The types and proviso express the idea that
the function takes a bit vector of length n and returns a bit vector of length m, where n + 4 = m.
These provisos permit the BSV compiler to statically verify that entities (values, variables, registers,
memories, FIFOs, and so on) have the correct bit-width.

4.2.1 The pseudo-function valueof (or valueOf)

To get the value that corresponds to a size type, there is a special pseudo-function, valueof, that
takes a size type and gives the corresponding Integer value. The pseudo-function is also sometimes
written as valueOf; both are considered correct.

exprPrimary = valueof ( type )
| valueOf ( type )

In other words, it converts from a numeric type expression into an ordinary value. These mechanisms
can be used to do arithmetic to derive dependent sizes. Example:

function ... foo (Vector#(n,int) xs) provisos (Log#(n,k));
Integer maxindex = valueof(n) - 1;
Int#(k) index;
index = fromInteger (maxindex) ;

endfunction

This function takes a vector of length n as an argument. The proviso fixes k to be the (ceiling of
the) logarithm of n. The variable index has bit-width k, which will be adequate to hold an index
into the list. The variable is initialized to the maximum index.

Note that the function foo may be invoked in multiple contexts, each with a different vector length.
The compiler will statically verify that each use is correct (e.g., the index has the correct width).

The pseudo-function valueof, which converts a numeric type to a value, should not be confused
with the pseudo-function Size0f, described in Section 8.5, which converts a type to a numeric type.
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4.2.2 The pseudo-function stringof (or string0f)

A function stringof (or string0f) similar to valueof exists to convert a string type to a string
value. Example:

instance CShow’#(Meta#(MetaConsNamed#(name, idx, nfields), a))
provisos (CShowSummand#(a)) ;
function cshow’(tagged Meta {x});
return $format(string0f (name), " {", cshowSummandNamed(x), "}");
endfunction
endinstance

4.3 A brief introduction to deriving clauses

The deriving clause is a part of the general facility of type classes (overloading groups), which is
described in detail in Section 8. Here we provide a brief description, which is adequate for most uses
and for continuity in a serial reading of this manual.

It is possible to attach a deriving clause to a type definition (Section 7), thereby directing the
compiler to define automatically certain overloaded functions for that type. The most common
forms of these clauses are:

deriving(Eq) // Meaning: automatically define == and !=
// for equality and inequality comparisons

deriving(Bits) // Meaning: automatically define pack and unpack
// for converting to/from bits

deriving(FShow) // Meaning: automatically define fshow to convert
// to a Fmt representation for $display functions

deriving(Bounded) // Meaning: automatically define minBound and maxBound
Example:

typedef enum {LOW, NORMAL, URGENT} Severity deriving(Eq, Bits);
// == and !'= are defined for variables of type Severity
// pack and unpack are defined for variables of type Severity

module mkSeverityProcessor (SeverityProcessor);
method Action process(Severity value);
// value is a variable of type Severity
if (value == URGENT) $display("WARNING: Urgent severity encountered.");
// Since value is of the type Severity, == is defined
endmethod
endmodule

5 Modules and interfaces, and their instances

Modules and interfaces form the heart of BSV. Modules and interfaces turn into actual hardware.
An interface for a module m mediates between m and other, external modules that use the facilities
of m. We often refer to these other modules as clients of m.
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In SystemVerilog and BSV we separate the declaration of an interface from module definitions.
There was no such separation in Verilog 1995 and Verilog 2001, where a module’s interface was
represented by its port list, which was part of the module definition itself. By separating the
interface declaration, we can express the idea of a common interface that may be offered by several
modules, without having to repeat that declaration in each of the implementation modules.

As in Verilog and SystemVerilog, it is important to distinguish between a module definition and
a module instantiation. A module definition can be regarded as specifying a scheme that can be
instantiated multiple times. For example, we may have a single module definition for a FIFO, and
a particular design may instantiate it multiple times for all the FIFOs it contains.

Similarly, we also distinguish interface declarations and instances, i.e., a design will contain interface
declarations, and each of these may have multiple instances. For example an interface declaration
I may have one instance i; for communication between module instances a; and by, and another
instance io for communication between module instances as and bs.

Module instances form a pure hierarchy. Inside a module definition mkM, one can specify instantia-
tions of other modules. When mkM is used to instantiate a module m, it creates the specified inner
module instances. Thus, every module instance other than the top of the hierarchy unambiguously
has a single parent module instance. We refer to the top of the hierarchy as the root module. Every
module instance has a unique set, possibly empty, of child module instances. If there are no children,
we refer to it as a leaf module.

A module consists of three things: state, rules that operate on that state, and the module’s interface
to the outside world (surrounding hierarchy). The state conceptually consists of all state in the
subhierarchy headed by this module; ultimately, it consists of all the lower leaf module instances
(see next section on state and module instantiation). Rules are the fundamental means to express
behavior in BSV (instead of the always blocks used in traditional Verilog). In BSV, an interface
consists of methods that encapsulate the possible transactions that clients can perform, i.e., the
micro-protocols with which clients interact with the module. When compiled into RTL, an interface
becomes a collection of wires.

5.1 Explicit state via module instantiation, not variables

In Verilog and SystemVerilog RTL, one simply declares variables, and a synthesis tool “infers” how
these variables actually map into state elements in hardware using, for example, their lifetimes
relative to events. A variable may map into a bus, a latch, a flip-flop, or even nothing at all. This
ambiguity is acknowledged in the Verilog 2001 and SystemVerilog LRMs.*

BSV removes this ambiguity and places control over state instantiation explicitly in the hands of
the designer. From the smallest state elements (such as registers) to the largest (such as memories),
all state instances are specified explicitly using module instantiation.

Conversely, an ordinary declared variable in BSV never implies state, i.e., it never holds a value
over time. Ordinary declared variables are always just convenient names for intermediate values in
a computation. Ordinary declared variables include variables declared in blocks, formal parameters,
pattern variables, loop iterators, and so on. Another way to think about this is that ordinary
variables play a role only in static elaboration, not in the dynamic semantics. This is one of the
aspects of BSV style that may initially appear unusual to the Verilog or SystemVerilog programmer.

Example:

4In the Verilog 2001 LRM, Section 3.2.2, Variable declarations, says: “A wvariable is an abstraction of a data storage
element.- - -NOTE In previous versions of the Verilog standard, the term register was used to encompass both the reg,
integer, time, real and realtime types; but that term is no longer used as a Verilog data type.”

In the SystemVerilog LRM, Section 5.1 says: “Since the keyword reg no longer describes the user’s intent in many
cases,- - - Verilog-2001 has already deprecated the use of the term register in favor of variable.”
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module mkExample (Empty);
// Hardware registers are created here
Reg#(Bit#(8)) value_reg <- mkReg(O);

FIFO#(Bit#(8)) fifo <- mkFIFO;

rule pop;
let value = fifo.first(); // value is a ordinary declared variable
// no state is implied or created
value_reg <= fifo.first(); // value_reg is state variable
fifo.deq(Q);
endrule
endmodule

5.2 Interface declaration

In BSV an interface contains members that are called methods (an interface may also contain subin-
terfaces, which are described in Section 5.2.1). To first order, a method can be regarded exactly
like a function, i.e., it is a procedure that takes zero or more arguments and returns a result. Thus,
method declarations inside interface declarations look just like function prototypes, the only differ-
ence being the use of the keyword method instead of the keyword function. Each method represents
one kind of transaction between a module and its clients. When translated into RTL, each method
becomes a bundle of wires.

The fundamental difference between a method and a function is that a method also carries with it a
so-called implicit condition. These will be described later along with method definitions and rules.

An interface declaration also looks similar to a struct declaration. One can think of an interface
declaration as declaring a new type similar to a struct type (Section 7), where the members all
happen to be method prototypes. A method prototype is essentially the header of a method definition
(Section 5.5).

interfaceDecl = [ attributelnstances |
interface typeDefType ;
{ interfaceMemberDecl }

endinterface [ : typelde |
typeDefType m= typelde [ typeFormals ]
typeFormals = # ( typeFormal { , typeFormal })
typeFormal = [ numeric | string | type typelde
interfaceMemberDecl ::= methodProto | subinterfaceDecl
methodProto m= [ attributeInstances |

method type identifier ( [ methodProtoFormals |) ;
methodProtoFormals ::= methodProtoFormal { , methodProtoFormal }
methodProtoFormal = [ attributeInstances | type identifier

Example: a stack of integers:

interface IntStack;
method Action push (int x);
method Action pop;
method int top;
endinterface: IntStack
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This describes an interface to a circuit that implements a stack (LIFO) of integers. The push method
takes an int argument, the item to be pushed onto the stack. Its output type is Action, namely it
returns an enable wire which, when asserted, will carry out the pushing action.” The pop method
takes no arguments, and simply returns an enable wire which, when asserted, will discard the element
from the top of the stack. The top method takes no arguments, and returns a value of type int,
i.e., the element at the top of the stack.

What if the stack is empty? In that state, it should be illegal to use the pop and top methods.
This is exactly where the difference between methods and functions arises. Each method has an
implicit ready wire, which governs when it is legal to use it, and these wires for the pop and top
methods will presumably be de-asserted if the stack is empty. Exactly how this is accomplished is
an internal detail of the module, and is therefore not visible as part of the interface declaration. (We
can similarly discuss the case where the stack has a fixed, finite depth; in this situation, it should
be illegal to use the push method when the stack is full.)

One of the major advantages of BSV is that the compiler automatically generates all the control
circuitry needed to ensure that a method (transaction) is only used when it is legal to use it.

Interface types can be polymorphic, i.e., parameterized by other types. For example, the following
declaration describes an interface for a stack containing an arbitrary but fixed type:

interface Stack#(type a);
method Action push (a x);
method Action pop;
method a top;

endinterface: Stack

We have replaced the previous specific type int with a type variable a. By “arbitrary but fixed” we
mean that a particular stack will specify a particular type for a, and all items in that stack will have
that type. It does not mean that a particular stack can contain items of different types.

For example, using this more general definition, we can also define the IntStack type as follows:
typedef Stack#(int) IntStack;

i.e., we simply specialize the more general type with the particular type int. All items in a stack of
this type will have the int type.

Usually there is information within the interface declaration which indicates whether a polymorphic
interface type is numeric or nonnumeric. The optional numeric is required before the type when
the interface type is polymorphic and must be numeric but there is no information in the interface
declaration which would indicate that the type is numeric.

For example, in the following polymorphic interface, count_size must be numeric because it is
defined as a parameter to Bit#().

interface Counter#(type count_size);
method Action increment();
method Bit#(count_size) read();
endinterface

From this use, it can be deduced that Counter’s parameter count_size must be numeric. However,
sometimes you might want to encode a size in an interface type which isn’t visible in the methods,
but is used by the module implementing the interface. For instance:

5The type Action is discussed in more detail in Section 10.6.
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interface SizedBuffer#(numeric type buffer_size, type element_type);
method Action enq(element_type e);
method ActionValue#(element_type) deq();

endinterface

In this interface, the depth of the buffer is encoded in the type. For instance, SizedBuffer#(8,
Bool) would be a buffer of depth 8 with elements of type Bool. The depth is not visible in the
interface, but is used by the module to know how much storage to instantiate.

Because the parameter is not mentioned anywhere else in the interface, there is no information
to determine whether the parameter is a numeric type or a non-numeric type. In this situation,
the default is to assume that the parameter is non-numeric. The user can override this default by
specifying numeric in the interface declaration.

The Standard Prelude defines a standard interface called Empty which contains no methods, i.e., its
definition is:

interface Empty;
endinterface

This is often used for top-level modules that integrate a testbench and a design-under-test, and for
modules like mkConnection (see Libraries Reference Guide) that just take interface arguments and
do not themselves offer any interesting interface.

5.2.1 Subinterfaces

Note: this is an advanced topic that may be skipped on first reading.
Interfaces can also be declared hierarchically, using subinterfaces.

subinterfaceDecl n= [ attributeInstances |
interface typeDefType;

where typeDefType is another interface type available in the current scope. Example:

interface ILookup;
interface Server#( RequestType, ResponseType ) mif;
interface RAMclient#( AddrType, DataType ) ram;
method Bool initialized;

endinterface: ILookup

This declares an interface ILookup module that consists of three members: a Server subinterface
called mif, a RAMClient subinterface called ram, and a boolean method called initialized (the
Server and RAMClient interface types are defined in Libraries Reference Guide). Methods of subin-
terfaces are accessed using dot notation to select the desired component, e.g.,

ilookup.mif.request.put(...);

Since Clock and Reset are both interface types, they can be used in interface declarations. Example:

interface ClockTickIfc ;
method Action tick() ;
interface Clock new_clk ;
endinterface
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5.3 Module definition

A module definition begins with a module header containing the module keyword, the module name,
parameters, arguments, interface type and provisos. The header is followed by zero or more module
statements. Finally we have the closing endmodule keyword, optionally labelled again with the
module name.

moduleDef == [ attributeInstances |
moduleProto
{ moduleStmt }
endmodule [ : identifier ]

moduleProto ::= module [ [ type 1 | identifier

[ moduleFormalParams | ( [ moduleFormalArgs | ) [ provisos |;
moduleFormalParams ::= # (moduleFormalParam { , moduleFormalParam })
moduleFormalParam ::= | attributelnstances | [ parameter | type identifier
moduleFormalArgs u= [ attributelnstances | type

| [ attributeInstances | type identifier
{, [ attributeInstances | type identifier }

As a stylistic convention, many BSV examples use module names like mkFoo, i.e., beginning with
the letters mk, suggesting the word make. This serves as a reminder that a module definition is not
a module instance. When the module is instantiated, one invokes mkFoo to actually create a module
instance.

The optional moduleFormalParams are exactly as in Verilog and SystemVerilog, i.e., they represent
module parameters that must be supplied at each instantiation of this module, and are resolved at
elaboration time. The optional keyword parameter specifies a Verilog parameter is to be generated;
without the keyword a Verilog port is generated. A Verilog parameter requires that the value is a
constant at elaboration. When the module is instantiated, the actual expression provided for the
parameter must be something that can be computed using normal Verilog elaboration rules. The bsc
compiler will check for this. The parameter keyword is only relevant when the module is marked
with the synthesize attribute.

Inside the module, the parameter keyword can be used for a parameter n that is used, for example,
for constants in expressions, register initialization values, and so on. However, n cannot be used
for structural variations in the module, such as declaring an array of n registers. Such structural
decisions (generate decisions) are taken by the compiler bsc, and cannot currently be postponed into
the Verilog.

The optional moduleFormalArgs represent the interfaces used by the module, such as clocks or wires.
The final argument is a single interface provided by the module instead of Verilog’s port list. The
interpretation is that this module will define and offer an interface of that type to its clients. If
the only argument is the interface, only the interface type is required. If there are other arguments,
both a type and an identifier must be specified for consistency, but the final interface name will not
be used in the body. Omitting the interface type completely is equivalent to using the pre-defined
Empty interface type, which is a trivial interface containing no methods.

The arguments and parameters may be enclosed in a single set of parentheses, in which case the #
would be omitted.

Provisos, which are optional, come next. These are part of an advanced feature called type classes
(overloading groups), and are discussed in more detail in Section 8.

Examples

A module with parameters and an interface.
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module mkFifo#(Int#(8) a) (Fifo);
endmodule
A module with arguments and an interface, but no parameters

module mkSyncPulse (Clock sClkIn, Reset sRstlnm,
Clock dClkIn,
SyncPulselfc ifc);

endmodule
A module definition with parameters, arguments, and provisos

module mkSyncReg#(a_type initValue)
(Clock sClkIn, Reset sRstIn,
Clock dClkIm,
Reg#(a_type) ifc)
provisos (Bits#(a_type, sa));

endmodule

The above module definition may also be written with the arguments and parameters combined in
a single set of parentheses.

module mkSyncReg (a_type initValue,
Clock sClkIn, Reset sRstln,
Clock dClkInm,
Reg#(a_type) ifc)
provisos (Bits#(a_type, sa));

endmodule
The body of the module consists of a sequence of moduleStmts:

moduleStmt = modulelnst
\ methodDef

| subinterfaceDef

\ rule

\ varDo | varDeclDo

| functionCall

\ system TaskStmt

\ ( expression )

\ returnStmt

\ varDecl | varAssign

| functionDef

\ moduleDef

\ <module> BeginEndStmt

\ <module>If | <module>Case

\ <module>For | <module>While

Most of these are discussed elsewhere since they can also occur in other contexts (e.g., in packages,
function bodies, and method bodies). Below, we focus solely on those statements that are found
only in module bodies or are treated specially in module bodies.
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5.4 Module and interface instantiation

Module instances form a hierarchy. A module definition can contain specifications for instantiating
other modules, and in the process, instantiating their interfaces. A single module definition may be
instantiated multiple times within a module.

5.4.1 Short form instantiation

There is a one-line shorthand for instantiating a module and its interfaces.

modulelnst = | attributelnstances |
type identifier <- moduleApp ;

moduleApp == ddentifier
( [ moduleActualParamArg { , moduleActualParamArg } | )

moduleActualParamArg:= expression
|  clocked_by expression
| reset_by expression

The statement first declares an identifier with an interface type. After the <- symbol, we have a
module application, consisting of a module identifier optionally followed by a list of parameters and
arguments, if the module is defined to have parameters and arguments. Note that the parameters
and the arguments are within a single set of parentheses, the parameters listed first, and there is no
# before the list.

Each module has an implicit clock and reset. These defaults can be changed by explicitly specifying
a clocked_by or reset_by argument in the module instantiation.

An optional documentation attribute (Section 14.7) placed before the module instantiation will place
a comment in the generated Verilog file.

The following skeleton illustrates the structure and relationships between interface and module
definition and instantiation.

interface ArithIO#(type a); //interface type called ArithIO
method Action input (a x, a y); //parameterized by type a
method a output; //contains 2 methods, input and output

endinterface: ArithIO

module mkGCD#(int n) (ArithIO#(bit [31:0]));
//module definition for mkGCD
//one parameter, an integer n

endmodule: mkGCD //presents interface of type ArithIO#(bit{31:0])

//declare the interface instance gcdIFC, instantiate the module mkGCD, set n=5
module mkTest ();

ArithIO#(bit [31:0]) gcdIfc <- mkGCD (5, clocked_by dClkIn);
endmodule: mkTest

The following example shows an module instantiation using a clocked_by statement.

interface Design_IFC;
method Action start(Bit#(3) in_datal, Bit#(3) in_data2, Bool select);
interface Clock clk_out;
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method Bit#(4) out_data();
endinterface : Design_IFC

module mkDesign(Clock prim_clk, Clock sec_clk, Design_IFC ifc);
RWire#(Bool) select <- mkRWire (select, clocked_by sec_clk);

endmodule:mkDesign

5.4.2 Long form instantiation

Deprecated: long-form instantiation was originally introduced into BSV for compatibility with Sys-
temVerilog. In practice, people rarely use this, preferring the short-form instead. As a matter of
more universally recognizable style, we suggest using the short form.

A module instantiation can also be written in its full form on two consecutive lines, as typical
in SystemVerilog. The full form specifies names for both the interface instance and the module
instance. In the shorthand described above, there is no name provided for the module instance
and the compiler infers one based on the interface name. This is often acceptable because module
instance names are only used occasionally in debugging and in hierarchical names.

An optional documentation attribute (Section 14.7) placed before the module instantiation will place
a comment in the generated Verilog file.

modulelnst = | attributelnstances |
type identifier () ;
moduleApp2 identifier ( [ moduleActualArgs |) ;

moduleApp2 n=identifier [ # ( moduleActualParam { , moduleActualParam } ) |
moduleActualParam ::= expression

moduleActualArgs = moduleActualArg { , moduleActualArg }

moduleActualArg = expression

| clocked_by expression
|  reset_by expression

The first line of the long form instantiation declares an identifier with an interface type. The second
line actually instantiates the module and defines the interface. The moduleApp2 is the module
(definition) identifier, and it must be applied to actual parameters (in #(..)) if it had been defined
to have parameters. After the moduleApp, the first identifier names the new module instance.
This may be followed by one or more moduleActualArg which define the arguments being used by
the module. The last identifier (in parentheses) of the moduleActualArg must be the same as the
interface identifier declared immediately above. It may be followed by a clocked_by or reset_by
statement.

The following examples show the complete form of the module instantiations of the examples shown
above.

module mkTest (); //declares a module mkTest
. //
ArithI0#(bit [31:0]) gcdIfc(; //declares the interface instance
mkGCD#(5) a_GCD (gcdIfc); //instantiates module mkGCD
//sets N=5, names module instance a_GCD
endmodule: mkTest //and interface instance gcdIfc
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module mkDesign(Clock prim_clk, Clock sec_clk, Design_IFC ifc);

RWire#(Bool) select();
mkRWire t_select(select, clocked_by sec_clk);

endmodule:mkDesign

5.5 Interface definition (definition of methods)

A module definition contains a definition of its interface. Typically this takes the form of a collection
of definitions, one for each method in its interface. Each method definition begins with the keyword
method, followed optionally by the return-type of the method, then the method name, its formal
parameters, and an optional implicit condition. After this comes the method body which is exactly
like a function body. It ends with the keyword endmethod, optionally labelled again with the method
name.

moduleStmt = methodDef
methodDef = method [ type ] identifier ( methodFormals ) | implicitCond | ;
functionBody
endmethod [ : identifier ]
methodFormals = methodFormal { , methodFormal }
methodFormal = [ type | identifier
implicitCond == if ( condPredicate )
condPredicate == exprOrCondPattern { &&& exprOrCondPattern }
exprOrCondPattern  ::= expression

| expression matches pattern

The method name must be one of the methods in the interface whose type is specified in the module
header. Each of the module’s interface methods must be defined exactly once in the module body.

The compiler will issue a warning if a method is not defined within the body of the module.

The return type of the method and the types of its formal arguments are optional, and are present
for readability and documentation purposes only. The compiler knows these types from the method
prototypes in the interface declaration. If specified here, they must exactly match the corresponding
types in the method prototype.

The implicit condition, if present, may be a boolean expression, or it may be a pattern-match
(pattern matching is described in Section 11). Expressions in the implicit condition can use any
of the variables in scope surrounding the method definition, i.e., visible in the module body, but
they cannot use the formal parameters of the method itself. If the implicit condition is a pattern-
match, any variables bound in the pattern are available in the method body. Omitting the implicit
condition is equivalent to saying if (True). The semantics of implicit conditions are discussed in
Section 10.13, on rules.

Every method is ultimately invoked from a rule (a method m; may be invoked from another method
ms which, in turn, may be invoked from another method mgs, and so on, but if you follow the chain,
it will end in a method invocation inside a rule). A method’s implicit condition controls whether
the invoking rule is enabled. Using implicit conditions, it is possible to write client code that is not
cluttered with conditionals that test whether the method is applicable. For example, a client of a
FIFO module can just call the enqueue or the dequeue method without having explicitly to test
whether the FIFO is full or empty, respectively; those predicates are usually specified as implicit
conditions attached to the FIFO methods.
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Please note carefully that the implicit condition precedes the semicolon that terminates the method
definition header. There is a very big semantic difference between the following;:

method ... foo (...) if (expr);
endmé££od

and
method ... foo (...); if (expr)
endmééﬁod

The only syntactic difference is the position of the semicolon. In the first case, if (expr) is an
implicit condition on the method. In the second case the method has no implicit condition, and if
(expr) starts a conditional statement inside the method. In the first case, if the expression is false,
any rule that invokes this method cannot fire, i.e., no action in the rule or the rest of this method
is performed. In the second case, the method does not prevent an invoking rule from firing, and if
the rule does fire, the conditional statement is not executed but other actions in the rule and the
method may be performed.

The method body is exactly like a function body, which is discussed in Section 9.8 on function
definitions.

See also Section 10.12 for the more general concepts of interface expressions and expressions as
first-class objects.

Example:
interface GrabAndGive; // interface is declared
method Action grab(Bit#(8) value); // method grab is declared
method Bit#(8) give(); // method give is declared
endinterface

module mkExample (GrabAndGive);
Reg# (Bit#(8)) value_reg <- mkReg(?);
Reg# (Bool) not_yet <- mkReg(True);

// method grab is defined

method Action grab(Bit#(8) value) if (not_yet);
value_reg <= value;
not_yet <= False;

endmethod

//method give is defined
method Bit#(8) give() if (!not_yet);
return value_reg;
endmethod
endmodule

5.5.1 Shorthands for Action and ActionValue method definitions

If a method has type Action, then the following shorthand syntax may be used. Section 10.6
describes action blocks in more detail.

37



Reference Guide BSV

methodDef ::= method Action identifier ( methodFormals ) [ implicitCond | ;
{ actionStmt }
endmethod [ : identifier |

i.e., if the type Action is used after the method keyword, then the method body can directly contain
a sequence of actionStmts without the enclosing action and endaction keywords.

Similarly, if a method has type ActionValue(¢) (Section 10.7), the following shorthand syntax may
be used:

methodDef ::= method ActionValue #( type ) identifier ( methodFormals )
[ implicitCond ] ;
{ actionValueStmt }
endmethod [ : identifier |

i.e., if the type ActionValue(t) is used after the method keyword, then the method body can
directly contain a sequence of actionStmts without the enclosing actionvalue and endactionvalue
keywords.

Example: The long form definition of an Action method:

method grab(Bit#(8) value);
action
last_value <= value;
endaction
endmethod

can be replaced by the following shorthand definition:

method Action grab(Bit#(8) value);
last_value <= value;
endmethod

5.5.2 Definition of subinterfaces

Declaration of subinterfaces (hierarchical interfaces) was described in Section 5.2.1. A subinterface
member of an interface can be defined using the following syntax.

moduleStmt = subinterfaceDef

subinterfaceDef = interface Identifier identifier ;
{ interfaceStmt }
endinterface [ : identifier |

interfaceStmt = methodDef
| subinterfaceDef
| expressionStmt

expressionStmt = wvarDecl | varAssign
| JunctionDef
| moduleDef
| <expression> BeginEndStmt
| <ezxpression>If | <expression>Case
| <expression>For | <expression>While

The subinterface member is defined within interface-endinterface brackets. The first Identifier
must be the name of the subinterface member’s type (an interface type), without any parameters.
The second identifier (and the optional identifier following the endinterface must be the subin-
terface member name. The interfaceStmts then define the methods or further nested subinterfaces
of this member. Example (please refer to the ILookup interface defined in Section 5.2.1):
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module ...

interface Server mif;

interface Put request;
method put(...);

endmethod: put
endinterface: request

interface Get response;
method get();

endmethod: get
endinterface: response

endinterface: mif
endmodule
5.5.3 Definition of methods and subinterfaces by assignment

Note: this is an advanced topic and can be skipped on first reading.
A method can also be defined using the following syntax.

methodDef = method [ type ] identifier ( methodFormals ) [ implicitCond ]
= expression ;

The part up to and including the implicitCond is the same as the standard syntax shown in Section
5.5. Then, instead of a semicolon, we have an assignment to an expression that represents the
method body. The expression can of course use the method’s formal arguments, and it must have
the same type as the return type of the method. See Sections 10.6 and 10.7 for how to construct
expressions of Action type and ActionValue type, respectively.

A subinterface member can also be defined using the following syntax.
subinterfaceDef = interface [ type | identifier = expression ;

The identifier is just the subinterface member name. The expression is an interface expression
(described in Section 10.12) of the appropriate interface type.

For example, in the following module the subinterface Put is defined by assignment.

//in this module, there is an instanciated FIFO, and the Put interface
//of the "mkSameInterface" module is the same interface as the fifo’s:

interface IFC1 ;
interface Put#(int) inO ;
endinterface

(*synthesizex)
module mkSameInterface (IFC1);

FIFO#(int) myFifo <- mkFIFO;

interface Put in0O = fifoToPut(myFifo) ;
endmodule
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5.6 Rules in module definitions

The internal behavior of a module is described using zero or more rules.

moduleStmt n= rule
rule w= [ attributeInstances ]

rule identifier [ ruleCond | ;

rule Body

endrule | : identifier |
ruleCond == ( condPredicate )
condPredicate = exprOrCondPattern { &&& exprOrCondPattern }
exprOrCondPattern = expression

| expression matches pattern
ruleBody x= { actionStmt }

A rule is optionally preceded by an attributelnstances; these are described in Section 14.3. Every
rule must have a name (the identifier). If the closing endrule is labelled with an identifier, it must
be the same name. Rule names must be unique within a module.

The ruleCond, if present, may be a boolean expression, or it may be a pattern-match (pattern
matching is described in Section 11). It can use any identifiers from the scope surrounding the rule,
i.e., visible in the module body. If it is a pattern-match, any variables bound in the pattern are
available in the rule body.

The ruleBody must be of type Action, using a sequence of zero or more actionStmts. We discuss
actionStmts in Section 10.6, but here we make a key observation. Actions include updates to state
elements (including register writes). There are no restrictions on different rules updating the same
state elements. The BSV compiler will generate all the control logic necessary for such shared
update, including multiplexing, arbitration, and resource control. The generated control logic will
ensure rule atomicity, discussed briefly in the next paragraphs.

A more detailed discussion of rule semantics is given in Section 6.2, Dynamic Semantics, but we
outline the key point briefly here. The ruleCond is called the explicit condition of the rule. Within
the ruleCond and ruleBody, there may be calls to various methods of various interfaces. Each such
method call has an associated implicit condition. The rule is enabled when its explicit condition and
all its implicit conditions are true. A rule can fire, i.e., execute the actions in its ruleBody, when the
rule is enabled and when the actions cannot “interfere” with the actions in the bodies of other rules.
Non-interference is described more precisely in Section 6.2 but, roughly speaking, it means that the
rule execution can be viewed as an atomic state transition, i.e., there cannot be any race conditions
between this rule and other rules.

This atomicity and the automatic generation of control logic to guarantee atomicity is a key benefit of
BSV. Note that because of method calls in the rule and, transitively, method calls in those methods,
a rule can touch (read/write) state that is distributed in several modules. Thus, a rule can express
a major state change in the design. The fact that it has atomic semantics guarantees the absence of
a whole class of race conditions that might otherwise bedevil the designer. Further, changes in the
design, whether in this module or in other modules, cannot introduce races, because the compiler
will verify atomicity.

See also Section 10.13 for a discussion of the more general concepts of rule expressions and rules as
first-class objects.

5.7 Examples

A register is primitive module with the following predefined interface:
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interface Reg#(type a);
method Action _write (a x1);
method a _read ();
endinterface: Reg

It is polymorphic, i.e., it can contain values of any type a. It has two methods. The _write()
method takes an argument x1 of type a and returns an Action, i.e., an enable-wire that, when
asserted, will deposit the value into the register. The _read() method takes no arguments and
returns the value that is in the register.

The principal predefined module definition for a register has the following header:

// takes an initial value for the register
module mkReg#(a v) (Reg#(a)) provisos (Bits#(a, sa));

The module parameter v of type a is specified when instantiating the module (creating the register),
and represents the initial value of the register. The module defines an interface of type Reg #(a).
The proviso specifies that the type a must be convertible into an sa-bit value. Provisos are discussed
in more detail in Sections 4.2 and 8.

Here is a module to compute the GCD (greatest common divisor) of two numbers using Euclid’s

algorithm.

interface ArithIO#(type a);
method Action start (a x, a y);
method a result;
endinterface: ArithIO

module mkGCD(ArithIO#(Bit#(size_t)));

Reg# (Bit#(size_t)) x(); // x is the interface to the register
mkRegU reg_1(x); // reg_1 is the register instance

Reg #(Bit#(size_t)) y(); // y is the interface to the register
mkRegU reg_2(y); // reg_2 is the register instance

rule flip (x > y & y !'= 0);

X <=y;
y <= X;
endrule

rule sub (x <=y && y !'= 0);

y <=y - X
endrule

method Action start(Bit#(size_t) numl, Bit#(size_t) num2) if (y == 0);

action
x <= numl;
y <= num2;
endaction

endmethod: start
method Bit#(size_t) result() if (y == 0);

result = x;
endmethod: result
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endmodule: mkGCD

The interface type is called ArithI0 because it expresses the interactions of modules that do any kind
of two-input, one-output arithmetic. Computing the GCD is just one example of such arithmetic.
We could define other modules with the same interface that do other kinds of arithmetic.

The module contains two rules, £1ip and sub, which implement Euclid’s algorithm. In other words,
assuming the registers x and y have been initialized with the input values, the rules repeatedly
update the registers with transformed values, terminating when the register y contains zero. At that
point, the rules stop firing, and the GCD result is in register x. Rule f1ip uses standard Verilog
non-blocking assignments to express an exchange of values between the two registers. As in Verilog,
the symbol <= is used both for non-blocking assignment as well as for the less-than-or-equal operator
(e.g., in rule sub’s explicit condition), and as usual these are disambiguated by context.

The start method takes two arguments numl and num2 representing the numbers whose GCD is
sought, and loads them into the registers x and y, respectively. The result method returns the
result value from the x register. Both methods have an implicit condition (y == 0) that prevents
them from being used while the module is busy computing a GCD result.

A test bench for this module might look like this:

module mkTest ();
ArithI0#(Bit#(32)) gcd(); // declare ArithIO interface gcd
mkGCD the_gcd (gcd); // instantiate gcd module the_gcd

rule getInputs;
. read next numl and num2 from file ...
the_gcd.start (numl, num2); // start the GCD computation
endrule

rule putOutput;
$display("Output is %d", the_gcd.result()); // print result
endrule
endmodule: mkTest

The first two lines instantiate a GCD module. The getInputs rule gets the next two inputs from
a file, and then initiates the GCD computation by calling the start method. The putOutput rule
prints the result. Note that because of the semantics of implicit conditions and enabling of rules,
the getInputs rule will not fire until the GCD module is ready to accept input. Similarly, the
putOutput rule will not fire until the output method is ready to deliver a result.’

The mkGCD module is trivial in that the rule conditions ((x > y) and (x <= y)) are mutually
exclusive, so they can never fire together. Nevertheless, since they both write to register y, the
compiler will insert the appropriate multiplexers and multiplexer control logic.

Similarly, the rule getInputs, which calls the start method, can never fire together with the mkGCD
rules because the implicit condition of getInputs, i.e., (y == 0) is mutually exclusive with the
explicit condition (y != 0) in flip and sub. Nevertheless, since getInputs writes into the_gcd’s
registers via the start method, the compiler will insert the appropriate multiplexers and multiplexer
control logic.

In general, many rules may be enabled simultaneously, and subsets of rules that are simultaneously
enabled may both read and write common state. The BSV compiler will insert appropriate schedul-
ing, datapath multiplexing, and control to ensure that when rules fire in parallel, the net state change
is consistent with the atomic semantics of rules.

6The astute reader will recognize that in this small example, since the result method is initially ready, the test
bench will first output a result of 0 before initiating the first computation. Let us overlook this by imagining that
Euclid is clearing his throat before launching into his discourse.
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5.8 Synthesizing Modules

In order to generate code for a BSV design (for either Verilog or Bluesim), it is necessary to indicate
to the compiler which module(s) are to be synthesized. A BSV module that is marked for code
generation is said to be a synthesized module.

Polymporphic modules cannot be synthesized as-is (since hardware datapaths, register sizes, etc.
will depend on the particular types in each instance). A common pattern is: we define a complex,
polymorphic module M; we define one or more very short (2-3 lines each) module definitions Mj,
Ms, ... each of which instantiates M at a specific type. These module, then, can be synthesized into
hardware.

In order to be synthesizable, a module must meet the following characteristics:

e The module must be of type Module and not of any other module type that can be defined
with ModuleCollect (see Libraries Reference Guide);

e Its interface must be fully specified; there can be no polymorphic types in the interface;

e Its interface is a type whose methods and subinterfaces are all convertible to wires (see Section
5.8.2).

e All other inputs to the module must be convertible to Bits (see Section 5.8.2).

A module can be marked for synthesis in one of two ways.

1. A module can be annotated with the synthesize attribute (see section 14.1.1). The appro-
priate syntax is shown below.

(* synthesize *)
module mkFoo (Foolfc);

endmodule

2. Alternatively, the -g compiler flag can be used on the bsc compiler command line to indicate
which module is to be synthesized. In order to have the same effect as the attribute syntax
shown above, the flag would be used with the format -g mkFoo (the appropriate module name
follows the -g flag).

Note that multiple modules may be selected for code generation (by using multiple synthesize
attributes, multiple —-g compiler flags, or a combination of the two).

Separate synthesis of a module can affect scheduling. This is because input wires to the module, such
as method arguments, now become a fixed resource that must be shared, whereas without separate
synthesis, module inlining allows them to be bypassed (effectively replicated). Consider a module
representing a register file containing 32 registers, with a method read(j) that reads the value of the
j’th register. Inside the module, this just indexes an array of registers. When separately synthesized,
the argument j becomes a 5-bit wide input port, which can only be driven with one value in any
given clock. Thus, two rules that invoke read(3) and read(11), for example, will conflict and then
they cannot fire in the same clock. If, however, the module is not separately synthesized, the module
and the read() method are inlined, and then each rule can directly read its target register, so the
rules can fire together in the same clock. Thus, in general, the addition of a synthesis boundary can
restrict behaviors.
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5.8.1 Type Polymorphism

As discussed in section 4.1, BSV supports polymorphic types, including interfaces (which are them-
selves types). Thus, a single BSV module definition, which provides a polymorphic interface, in effect
defines a family of different modules with different characteristics based on the specific parameter(s)
of the polymorphic interface. Consider the module definition presented in section 5.7.

module mkGCD (ArithIO#(Bit#(size_t)));
endmodule

Based on the specific type parameter given to the ArithI0 interface, the code required to implement
mkGCD will differ. Since the bsc compiler does not create ”parameterized” Verilog, in order for a
module to be synthesizable, the associated interface must be fully specified (i.e not polymorphic). If
the mkGCD module is annotated for code generation as is

(* synthesize *)
module mkGCD (ArithIO#(Bit#(size_t)));

endmodule
and we then run the compiler, we get the following error message.

Error: "GCD.bsv", line 7, column 8: (T0043)
"Cannot synthesize ‘mkGCD’: Its interface is polymorphic"

If however we instead re-write the definition of mkGCD such that all the references to the type
parameter size_t are replaced by a specific value, in other words if we write something like,

(* synthesize %)
module mkGCD32 (ArithIO#(Bit#(32)));

Reg# (Bit#(32)) x(); // x is the interface to the register
mkRegU reg_1(x); // reg_1 is the register instance

endmodule

then the compiler will complete successfully and provide code for a 32-bit version of the module
(called mkGCD32). Equivalently, we can leave the code for mkGCD unchanged and instantiate it inside
another synthesized module which fully specifies the provided interface.

(* synthesize *)

module mkGCD32(ArithI0#(Bit#(32)));
let ifc();
mkGCD _temp(ifc);
return (ifc);

endmodule
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5.8.2 Module Interfaces and Arguments

As mentioned above, a module is synthesizable if its interface is convertible to wires.

An interface is convertible to wires if all methods and subinterfaces are convertible to wires.

A method is convertible to wires if

— all arguments are convertible to bits;

— it is an Action method or it is an ActionValue or value method where the return value
is convertible to bits.

Clock, Reset, and Inout subinterfaces are convertible to wires.

A Vector interface can be synthesized as long as the type inside the Vector is of type Clock,
Reset, Inout or a type which is convertible to bits.

To be convertible to bits, a type must be in the Bits typeclass.

For a module to be synthesizable its arguments must be of type Clock, Reset, Inout, or a type
convertible to bits. Vectors of the preceding types are also synthesizable. If a module has one or
more arguments which are not one of the above types, the module is not synthesizable. For example,
if an argument is a datatype, such as Integer, which is not in the Bits typeclass, then the module
cannot be separately synthesized.

5.9 Other module types

Note: This is an advanced topic that may be skipped on first reading.

There are many types of modules in BSV. The default BSV module type is Module #(ifc). When
instantiated, a Module adds state elements and rules to the accumulation of elements and rules
already in the design. This is the only synthesizable module type, but other types can exist. For
instance, the type ModuleCollect#(t,ifc) (see Libraries Reference Guide) allows items other than
states and rules to be collected while elaborating the module structure.

For most applications the modules in the design will be of type Module and the type can be inferred.
When you write:

module mkMod(Ifc);
endmodule

the compiler doesn’t force this code to be specific to the basic Module type, although it usually will
be. BSV allows this syntax to be used for any type of module; what you are declaring here is a
polmorphic module. In fact, it is really just a function that returns a module type. But instead of
returning back the type Module, it returns back any type m with the proviso that m is a module.
That is expressed with the proviso:

IsModule#(m,c)

However, if the code for mkMod uses a feature that is specific to one type of module, such as trying
to add to the collection in a ModuleCollect module, then type inference will discover that your
module can’t be any module type m, but must be a specific type (such as ModuleCollect in this
example).

In that case, you need to declare that the module mkMod works for a specific module type using the
bracket syntax:
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module [ModuleCollect#(t)] mkMod(Ifc);

In some instances, type inference will determine that the module must be the specific type Module,
and you may get a signature mismatch error stating that where the code said any module type m,
it really has to be Module. This can be fixed by explicitly stating the module type in the module
declaration:

module [Module] mkMod(Ifc);

6 Static and dynamic semantics

What is a legal BSV source text, and what are its legal behaviors? These questions are addressed by
the static and dynamic semantics of BSV. The BSV compiler checks that the design is legal according
to the static semantics, and produces RTL hardware that exhibits legal behaviors according to the
dynamic semantics.

Conceptually, there are three phases in processing a BSV design, just like in Verilog and System Ver-
ilog:

e Static checking: this includes syntactic correctness, type checking and proviso checking.

e Static elaboration: actual instantiation of the design and propagation of parameters, producing
the module instance hierarchy.

e FEzxecution: execution of the design, either in a simulator or as real hardware.

We refer to the first two as the static phase (i.e., pre-execution), and to the third as the dynamic
phase. Dynamic semantics are about the temporal behavior of the statically elaborated design,
that is, they describe the dynamic execution of rules and methods and their mapping into clocked
synchronous hardware.

A BSV program can also contain assertions; assertion checking can occur in all three phases, de-
pending on the kind of assertion.

6.1 Static semantics

The static semantics of BSV are about syntactic correctness, type checking, proviso checking, static
elaboration and static assertion checking. Syntactic correctness of a BSV design is checked by the
parser in the BSV compiler, according to the grammar described throughout this document.

6.1.1 Type checking

BSV is statically typed, just like Verilog, SystemVerilog, C, C++, and Java. This means the usual
things: every variable and every expression has a type; variables must be assigned values that have
compatible types; actual and formal parameters/arguments must have compatible types, etc. All
this checking is done on the original source code, before any elaboration or execution.

BSV uses SystemVerilog’s new tagged union mechanism instead of the older ordinary unions, thereby
closing off a certain kind of type loophole. BSV also allows more type parameterization (polymor-
phism), without compromising full static type checking.
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6.1.2 Proviso checking and bit-width constraints

In BSV, overloading constraints and bit-width constraints are expressed using provisos (Sections 4.2
and 8.1). Overloading constraints provide an extensible mechanism for overloading.

BSV is stricter about bit-width constraints than Verilog and SystemVerilog in that it avoids implicit
zero-extension, sign-extension and truncation of bit-vectors. These operations must be performed
consciously by the designer, using library functions, thereby avoiding another source of potential
errors.

6.1.3 Static elaboration

As in Verilog and SystemVerilog, static elaboration is the phase in which the design is instantiated,
starting with a top-level module instance, instantiating its immediate children, instantiating their
children, and so on to produce the complete instance hierarchy.

BSV has powerful generate-like facilities for succinctly expressing regular structures in designs. For
example, the structure of a linear pipeline may be expressed using a loop, and the structure of a
tree-structured reduction circuit may be expressed using a recursive function. All these are also
unfolded and instantiated during static elaboration. In fact, the BSV compiler unfolds all structural
loops and functions during static elaboration.

A fully elaborated BSV design consists of no more than the following components:

e A module instance hierarchy. There is a single top-level module instance, and each module
instance contains zero or more module instances as children.

e An interface instance. Each module instance presents an interface to its clients, and may itself
be a client of zero or more interfaces of other module instances.

e Method definitions. Each interface instance consists of zero or more method definitions.
A method’s body may contain zero or more invocations of methods in other interfaces.

Every method has an implicit condition, which can be regarded as a single output wire that
is asserted only when the method is ready to be invoked. The implicit condition may directly
test state internal to its module, and may indirectly test state of other modules by invoking
their interface methods.

e Rules. Each module instance contains zero or more rules, each of which contains a condition
and an action. The condition is a boolean expression. Both the condition and the action may
contain invocations of interface methods of other modules. Since those interface methods can
themselves contain invocations of other interface methods, the conditions and actions of a rule
may span many modules.

6.2 Dynamic semantics

The dynamic semantics of BSV specify the temporal behavior of rules and methods and their map-
ping into clocked synchronous hardware.

Every rule has a syntactically explicit condition and action. Both of these may contain invocations
of interface methods, each of which has an implicit condition. A rule’s composite condition consists
of its syntactically explicit condition ANDed with the implicit conditions of all the methods invoked
in the rule. A rule is said to be enabled if its composite condition is true.
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6.2.1 Reference semantics

The simplest way to understand the dynamic semantics is through a reference semantics, which is
completely sequential. However, please do not equate this with slow execution; the execution steps
described below are not the same as clocks; we will see in the next section that many steps can be
mapped into each clock. The execution of any BSV program can be understood using the following
very simple procedure:

Repeat forever:
Step: Pick any one enabled rule, and perform its action.
(We say that the rule is fired or executed.)

Note that after each step, a different set of rules may be enabled, since the current rule’s action will
typically update some state elements in the system which, in turn, may change the value of rule
conditions and implicit conditions.

Also note that this sequential, reference semantics does not specify how to choose which rule to
execute at each step. Thus, it specifies a set of legal behaviors, not just a single unique behavior.
The principles that determine which rules in a BSV program will be chosen to fire (and, hence, more
precisely constrain its behavior) are described in section 6.2.3.

Nevertheless, this simple reference semantics makes it very easy for the designer to reason about
invariants (correctness conditions). Since only one rule is executed in each step, we only have to
look at the actions of each rule in isolation to check how it maintains or transforms invariants. In
particular, we do not have to consider interactions with other rules executing simultaneously.

Another way of saying this is: each rule execution can be viewed as an atomic state transition.” Race
conditions, the bane of the hardware designer, can generally be explained as an atomicity violation;
BSV’s rules are a powerful way to avoid most races.

The reference semantics is based on Term Rewriting Systems (TRSs), a formalism supported by
decades of research in the computer science community [Ter03]. For this reason, we also refer to the
reference semantics as “the TRS semantics of BSV.”

6.2.2 Mapping into efficient parallel clocked synchronous hardware

A BSV design is mapped by the BSV compiler into efficient parallel clocked synchronous hardware.
In particular, the mapping permits multiple rules to be executed in each clock cycle. This is done
in a manner that is consistent with the reference TRS semantics, so that any correctness properties
ascertained using the TRS semantics continue to hold in the hardware.

Standard clocked synchronous hardware imposes the following restrictions:

e Persistent state is updated only once per clock cycle, at a clock edge. During a clock cycle,
values read from persistent state elements are the ones that were registered in the last cycle.

e Clock-speed requirements place a limit on the amount of combinational computation that can
be performed between state elements, because of propagation delay.

The composite condition of each rule is mapped into a combinational circuit whose inputs, possibly
many, sense the current state and whose 1-bit output specifies whether this rule is enabled or not.

The action of each rule is mapped into a combinational circuit that represents the state transition
function of the action. It can have multiple inputs and multiple outputs, the latter being the
computed next-state values.

TWe use the term atomic as it is used in concurrency theory (and in operating systems and databases), i.e., to
mean indivisible.
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Figure 8: A general scheme for mapping an N-rule system into clocked synchronous hardware.

Figure 8 illustrates a general scheme to compose rule components when mapping the design to clocked
synchronous hardware. The State box lumps together all the state elements in the BSV design (as
described earlier, state elements are explicitly specified in BSV). The BSV compiler produces a
rule-control circuit which conceptually takes all the enable (cond) signals and all the data (action)
outputs and controls which of the data outputs are actually captured at the next clock in the state
elements. The enable signals feed a scheduler circuit that decides which of the rules will actually
fire. The scheduler, in turn, controls data multiplexers that select which data outputs reach the
data inputs of state elements, and controls which state elements are enabled to capture the new
data values. Firing a rule simply means that the scheduler selects its data output and clocks it into
the next state.

At each clock, the scheduler selects a subset of rules to fire. Not all subsets are legal. A subset is
legal if and only if the rules in the subset can be ordered with the following properties:

e A hypothetical sequential execution of the ordered subset of rules is legal at this point, ac-
cording to the TRS semantics. In particular, the first rule in the ordered subset is currently
enabled, and each subsequent rule would indeed be enabled when execution reaches it in the
hypothetical sequence.

A special case is where all rules in the subset are already currently enabled, and no rule would
be disabled by execution of prior rules in the order.

e The hardware execution produces the same net effect on the state as the hypothetical sequential
execution, even though the hardware execution performs reads and writes in a different order
from the hypothetical sequential execution.

The BSV compiler performs a very sophisticated analysis of the rules in a design and synthesizes an
efficient hardware scheduler that controls execution in this manner.

Note that the scheme in Figure 8 is for illustrative purposes only. First, it lumps together all the
state, shows a single rule-control box, etc., whereas in the real hardware generated by the BSV
compiler these are distributed, localized and modular. Second, it is not the only way to map the
design into clocked synchronous hardware. For example, any two enabled rules can also be executed
in a single clock by feeding the action outputs of the first rule into the action inputs of the second
rule, or by synthesizing hardware for a composite circuit that computes the same function as the
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composition of the two actions, and so on. In general, these alternative schemes may be more
complex to analyze, or may increase total propagation delay, but the compiler may use them in
special circumstances.

In summary, the BSV compiler performs a detailed and sophisticated analysis of rules and their
interactions, and maps the design into very efficient, highly parallel, clocked synchronous hardware
including a dynamic scheduler that allows many rules to fire in parallel in each clock, but always
in a manner that is consistent with the reference TRS semantics. The designer can use the simple
reference semantics to reason about correctness properties and be confident that the synthesized
parallel hardware will preserve those properties. (See Section 14.3 for the “scheduling attributes”
mechanism using which the designer can guide the compiler in implementing the mapping.)

When coding in other HDLs, the designer must maintain atomicity manually. He must recognize
potential race conditions, and design the appropriate data paths, control and synchronization to
avoid them. Reasoning about race conditions can cross module boundaries, and can be introduced
late in the design cycle as the problem specification evolves. The BSV compiler automates all of this
and, further, is capable of producing RTL that is competitive with hand-coded RTL.

6.2.3 How rules are chosen to fire

The previous section described how an efficient circuit can be built whose behavior will be consis-
tent with sequential TRS semantics of BSV. However, as noted previously, the sequential reference
semantics can be consistent with a range of different behaviors. There are two rule scheduling prin-
ciples that guide the BSV compiler in choosing which rules to schedule in a clock cycle (and help
a designer build circuits with predictable behavior). Except when overridden by an explicit user
command or annotation, the BSV compiler schedules rules according to the following two principles:

1. Every rule enabled during a clock cycle will either be fired as part of that clock cycle or a
warning will be issued during compilation.

2. A rule will fire at most one time during a particular clock cycle.

The first principle comes into play when two (or more) rules conflict - either because they are
competing for a limited resource or because the result of their simultaneous execution is not consistent
with any sequential rule execution. In the absence of a user annotation, the compiler will arbitrarily
choose ® which rule to prioritize, but must also issue a warning. This guarantees the designer is
aware of the ambiguity in the design and can correct it. It might be corrected by changing the rules
themselves (rearranging their predicates so they are never simultaneously applicable, for example)
or by adding an urgency annotation which tells the compiler which rule to prefer (see section 14.3.3).
When there are no scheduling warnings, it is guaranteed that the compiler is making no arbitrary
choices about which rules to execute.

The second principle ensures that continuously enabled rules (like a counter increment rule) will
not be executed an unpredictable number of times during a clock cycle. According to the first rule
scheduling principle, a rule that is always enabled will be executed at least once during a clock
cycle. However, since the rule remains enabled it theoretically could execute multiple times in a
clock cycle (since that behavior would be consistent with a sequential semantics). Since rules (even
simple things like a counter increment) consume limited resources (like register write ports) it is
pragmatically useful to restrict them to executing only once in a cycle (in the absence of specific
user instructions to the contrary). Executing a continuously enabled rule only once in a cycle is also
the more straightforward and intuitive behavior.

8The compiler’s choice, while arbitrary, is deterministic. Given the same source and compiler version, the same
schedule (and, hence, the same hardware) will be produced. However, because it is an arbitrary choice, it can be
sensitive to otherwise irrelevant details of the program and is not guaranteed to remain the same if the source or
compiler version changes.
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Together, these two principles allow a designer to completely determine the rules that will be chosen
to fire by the schedule (and, hence, the behavior of the resulting circuit).

6.2.4 Mapping specific hardware models

Annotations on the methods of a module are used by the BSV compiler to model the hardware
behavior into TRS semantics. For example, all reads from a register must be scheduled before any
writes to the same register. That is to say, any rule which reads from a register must be scheduled
earlier than any other rule which writes to it. More generally, there exist scheduling constraints for
specific hardware modules which describe how methods interact within the schedule. The scheduling
annotations describe the constraints enforced by the BSV compiler.

The meanings of the scheduling annotations are:

C conflicts

CF conflict-free

SB sequence before

SBR sequence before restricted (cannot be in the same rule)
SA sequence after

SAR sequence after restricted (cannot be in the same rule)

The annotations SA and SAR are provided for documentation purposes only; they are not supported
in the BSV language.

Below is an example of the scheduling annotations for a register:

Scheduling Annotations
Register
\ read \ write
read CF SB
write SA | SBR

The table describes the following scheduling constraints:

e Two read methods would be conflict-free (CF), that is, you could have multiple methods that
read from the same register in the same rule, sequenced in any order.

e A write is sequenced after (SA) a read.
e A read is sequenced before (SB) a write.

e And finally, if you have two write methods, one must be sequenced before the other, and they
cannot be in the same rule, as indicated by the annotation SBR.

The scheduling annotations are specific to the TRS model desired and a single hardware component
can have multiple TRS models. For example, a register may be implemented using a mkReg module
or a mkConfigReg module, which are identical except for their scheduling annotations.

7 User-defined types (type definitions)
User-defined types must be defined at the top level of a package.
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typeDef == typedefSynonym
| typedefEnum
| typedefStruct
| typedefTaggedUnion

As a matter of style, BSV requires that all enumerations, structs and unions be declared only via
typedef, i.e., it is not possible directly to declare a variable, formal parameter or formal argument
as an enum, struct or union without first giving that type a name using a typedef.

Each typedef of an enum, struct or union introduces a new type that is different from all other types.
For example, even if two typedefs give names to struct types with exactly the same corresponding
member names and types, they define two distinct types.

Other typedefs, i.e., not involving an enum, struct or union, merely introduce type synonyms for
existing types.

7.1 Type synonyms

Type synonyms are just for convenience and readability, allowing one to define shorter or more
meaningful names for existing types. The new type and the original type can be used interchangeably
anywhere.

typedefSynonym n= typedef type typeDefType ;
typeDefType = typelde | typeFormals |
typeFormals = # ( typeFormal { , typeFormal })
typeFormal = [ numeric | string | type typelde

Examples. Defining names for bit vectors of certain lengths:

typedef bit [7:0] Byte;
typedef bit [31:0] Word;
typedef bit [63:0] LongWord;

Examples. Defining names for polymorphic data types.

typedef Tuple3#(a, a, a) Triple#(type a);

typedef Int#(n) MyInt#(type n);
The above example could also be written as:
typedef Int#(n) MyInt#(numeric type n);

The numeric is not required because the parameter to Int will always be numeric. numeric is only
required when the compiler can’t determine whether the parameter is a numeric or non-numeric
type. It will then default to assuming it is non-numeric. The user can override this default by
specifying numeric in the typedef statement.

A typedef statement can be used to define a synonym for an already defined synonym. Example:
typedef Triple#(Longword) TLW;

Since an Interface is a type, we can have nested types:
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typedef Reg#(Vector#(8, UInt#(8))) ListReg;
typedef List#(List#(Bit#(4))) Array0f4Bits;

The typedef statement must always be at the top level of a package, not within a module. To
introduce a local name within a module, use Alias, NumAlias or StrAlias (see Libraries Reference
Guide). Since these introduce new names which are type variables as opposed to types, the new
names must begin with lower case letters. Alias is used for types which can be the types of variables,
while NumAlias and StrAlias are used to give new names to numeric and string types. Example:

module mkMod(Ifc)
provisos (Alias#(Bit#(crc_size), crc));

module mkRAM(RAMIfc)
provisos (NumAlias#(addr_size, TLog#(buff_size)));

7.2 Enumerations

typedefEnum = typedef enum { typedefEnumElements } Identifier | derives | ;
typedefEnumFElements ::= typedefEnumElement { , typedefEnumElement }
typedefEnumElement = Identifier | = intLiteral ]

| Identifier lintLiteral] [ = intLiteral |
| Identifier [intLiteral : intLiterall [ = intLiteral |

Enumerations (enums) provide a way to define a set of unique symbolic constants, also called labels or
member names. Each enum definition creates a new type different from all other types. Enum labels
may be repeated in different enum definitions. Enumeration labels must begin with an uppercase
letter.

The optional derives clause is discussed in more detail in Sections 4.3 and 8. One common form is
deriving (Bits), which tells the compiler to generate a bit-representation for this enum. Another
common form of the clause is deriving (Eq), which tells the compiler to pick a default equality
operation for these labels, so they can also be tested for equality and inequality. A third common
form is deriving (Bounded), which tells the compiler to define constants minBound and maxBound
for this type, equal in value to the first and last labels in the enumeration. Also defined in deriving
(FShow), which defines a Fmt type for the labels for use with $Display functions. These specifica-
tions can be combined, e.g., deriving (Bits, Eq, Bounded, FShow). All these default choices for
representation, equality and bounds can be overridden (see Section 8).

The declaration may specify the encoding used by deriving(Bits) by assigning numbers to tags.
When an assignment is omitted, the tag receives an encoding of the previous tag incremented by one;
when the encoding for the initial tag is omitted, it defaults to zero. Specifying the same encoding
for more than one tag results in an error.

Multiple tags may be declared by using the index (Tag [ntags]) or range (Tag [start :end]) no-
tation. In the former case, ntags tags will be generated, from TagO to Tagn-1; in the latter case,
|end — start| + 1 tags, from Tagstart to Tagend.

Example. The boolean type can be defined in the language itself:
typedef enum { False, True } Bool deriving (Bits, Eq);

The compiler will pick a one-bit representation, with 1’b0 and 1’b1 as the representations for False
and True, respectively. It will define the == and != operators to also work on Bool values.

Example. Excerpts from the specification of a processor:
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typedef enum { RO, R1, ..., R31 } RegName deriving (Bits);
typedef RegName Rdest;
typedef RegName Rsrc;

The first line defines an enum type with 32 register names. The second and third lines define type
synonyms for RegName that may be more informative in certain contexts (“destination” and “source”
registers). Because of the deriving clause, the compiler will pick a five-bit representation, with
values 5’h00 through 5’h1F for RO through R31.

Example. Tag encoding when deriving(Bits) can be specified manually:

typedef enum {

Add = 5,
Sub = 0,
Not,

Xor = 3,

} OpCode deriving (Bits);

The Add tag will be encoded to five, Sub to zero, Not to one, and Xor to three.

Example. A range of tags may be declared in a single clause:

typedef enum {
Foo[2],
Bar[5:7],
Quux[3:2]

} Glurph;

This is equivalent to the declaration

typedef enum {
FooO,
Fool,
Bar5b,
Bar6,
Bar7,
Quux3,
Quux?2
} Glurph;

7.3 Structs and tagged unions

A struct definition introduces a new record type.

SystemVerilog has ordinary unions as well as tagged unions, but in BSV we only use tagged unions,
for several reasons. The principal benefit is safety (verification). Ordinary unions open a serious
type-checking loophole, whereas tagged unions are completely type-safe. Other reasons are that,
in conjunction with pattern matching (Section 11), tagged unions yield much more succinct and
readable code, which also improves correctness. In the text below, we may simply say “union” for
brevity, but it always means “tagged union.”

typedefStruct = typedef struct {
{ structMember }
} typeDefType | derives | ;
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typedefTaggedUnion  ::= typedef union tagged {
{ wunionMember }
} typeDefType | derives | ;

structMember == type identifier ;
| subUnion identifier ;

untonMember == type Identifier ;
| subStruct Identifier ;
| subUnion Identifier ;
| void Identifier ;

subStruct = struct {
{ structMember }
}
subUnion = union tagged {
{ wunionMember }
}
typeDefType n= typelde [ typeFormals ]
typeFormals m= # ( typeFormal { , typeFormal })
typeFormal = [ numeric | string | type typelde

All types can of course be mutually nested if mediated by typedefs, but unions can also be mutually
nested directly, as described in the syntax above. Structs and unions contain members. A union
member (but not a struct member) can have the special void type (see the types MaybeInt and
Maybe in the examples below for uses of void). All the member names in a particular struct or
union must be unique, but the same names can be used in other structs and members; the compiler
will try to disambiguate based on type.

A struct value contains the first member and the second member and the third member, and so on.
A union value contains just the first member or just the second member or just the third member,
and so on. Struct member names must begin with a lowercase letter, whereas union member names
must begin with an uppercase letter.

In a tagged union, the member names are also called tags. Tags play a very important safety role.
Suppose we had the following:

typedef union tagged { int Tagi; OneHot Tagoh; } U deriving (Bits);
U x;

The variable x not only contains the bits corresponding to one of its member types int or OneHot,
but also some extra bits (in this case just one bit) that remember the tag, 0 for Tagi and 1 for
Tagoh. When the tag is Tagi, it is impossible to read it as a OneHot member, and when the tag is
Tagoh it is impossible to read it as an int member, i.e., the syntax and type checking ensure this.
Thus, it is impossible accidentally to misread what is in a union value.

The optional derives clause is discussed in more detail in Section 8. One common form is deriving
(Bits), which tells the compiler to pick a default bit-representation for the struct or union. For
structs it is simply a concatenation of the representations of the members. For unions, the repre-
sentation consists of t + m bits, where ¢ is the minimum number of bits to code for the tags in this
union and m is the number of bits for the largest member. Every union value has a code in the ¢-bit
field that identifies the tag, concatenated with the bits of the corresponding member, right-justified
in the m-bit field. If the member needs fewer than m bits, the remaining bits (between the tag and
the member bits) are undefined.

Struct and union typedefs can define new, polymorphic types, signalled by the presence of type
parameters in #(...). Polymorphic types are discussed in section 4.1.
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Section 10.11 on struct and union expressions describes how to construct struct and union values
and to access and update members. Section 11 on pattern-matching describes a more high-level way
to access members from structs and unions and to test union tags.

Example. Ordinary, traditional record structures:

typedef struct { int x; int y; } Coord;
typedef struct { Addr pc; RegFile rf; Memory mem; } Proc;

Example. Encoding instruction operands in a processor:

typedef union tagged {
bit [4:0] Register;
bit [21:0] Literal;
struct {
bit [4:0] regAddr;
bit [4:0] reglIndex;
} Indexed;
} InstrOperand;

An instruction operand is either a 5-bit register specifier, a 22-bit literal value, or an indexed memory
specifier, consisting of two 5-bit register specifiers.

Example. Encoding instructions in a processor:

typedef union tagged {
struct {
Op op; Reg rs; CPUReg rt; UIntl6 imm;
} Immediate;

struct {
Op op; UInt26 target;
} Jump;
} Instruction
deriving (Bits);

An Instruction is either an Immediate or a Jump. In the former case, it contains a field, op,
containing a value of type Op; a field, rs, containing a value of type Reg; a field, rt, containing a
value of type CPUReg; and a field, imm, containing a value of type UInt16. In the latter case, it
contains a field, op, containing a value of type Op, and a field, target, containing a value of type
UInt26.

Example. Optional integers (an integer together with a valid bit):

typedef union tagged {

void Invalid;
int Valid;
} MaybelInt

deriving (Bits);

A MaybelInt is either invalid, or it contains an integer (Valid tag). The representation of this type
will be 33 bits— one bit to represent Invalid or Valid tag, plus 32 bits for an int. When it carries
an invalid value, the remaining 32 bits are undefined. It will be impossible to read/interpret those
32 bits when the tag bit says it is Invalid.

This MaybeInt type is very useful, and not just for integers. We generalize it to a polymorphic type:
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typedef union tagged {
void Invalid;
a Valid;
} Maybe#(type a)
deriving (Bits);

This Maybe type can be used with any type a. Consider a function that, given a key, looks up a
table and returns some value associated with that key. Such a function can return either an invalid
result (Invalid), if the table does not contain an entry for the given key, or a valid result Valid v
if v is associated with the key in the table. The type is polymorphic (type parameter a) because it
may be used with lookup functions for integer tables, string tables, IP address tables, etc. In other
words, we do not over-specify the type of the value v at which it may be used.

See Section 13.4 for an important, predefined set of struct types called Tuples for adhoc structs of
between two and eight members.

8 Type classes (overloading groups) and provisos

Note: This is an advanced topic that may be skipped on first reading.

For most BSV programming, one just needs to know about a few predefined type classes such as Bits
and Eq, about provisos, and about the automatic mechanism for defining the overloaded functions
in those type classes using a deriving clause. The brief introduction in Sections 4.2 and 4.3 should
suffice.

This section is intended for the advanced programmer who may wish to define new type classes
(using a typeclass declaration), or explicitly to define overloaded functions using an instance
declaration.

In programming languages, the term overloading refers to the use of a common function name or
operator symbol to represent some number (usually finite) of functions with distinct types. For
example, it is common to overload the operator symbol + to represent integer addition, floating
point addition, complex number addition, matrix addition, and so on.

Note that overloading is distinct from polymorphism, which is used to describe a single function
or operator that can operate at an infinity of types. For example, in many languages, a single
polymorphic function arraySize () may be used to determine the number of elements in any array,
no matter what the type of the contents of the array.

A type class (or overloading group) further recognizes that overloading is often performed with
related groups of function names or operators, giving the group of related functions and operators a
name. For example, the type class Ord contains the overloaded operators for order-comparison: <,
<=, > and >=.

If we specify the functions represented by these operator symbols for the types int, Bool, bit [m:0]
and so on, we say that those types are instances of the Ord type class.

A proviso is a (static) condition attached to some constructs. A proviso requires that certain types
involved in the construct must be instances of certain type classes. For example, a generic sort
function for sorting lists of type List#(¢) will have a proviso (condition) that ¢ must be an instance
of the Ord type class, because the generic function uses an overloaded comparison operator from
that type class, such as the operator < or >.

Type classes are created explicitly using a typeclass declaration (Section 8.2). Further, a type class
is explicitly populated with a new instance type ¢, using an instance declaration (Section 8.3), in
which the programmer provides the specifications for the overloaded functions for the type .
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8.1 Provisos
Consider the following function prototype:

function List#(t) sort (List#(t) xs)
provisos (Ord#(t));

This prototype expresses the idea that the sorting function takes an input list xs of items of type
t (presumably unsorted), and produces an output list of type t (presumably sorted). In order to
perform its function it needs to compare elements of the list against each other using an overloaded
comparison operator such as <. This, in turn, requires that the overloaded operator be defined on
objects of type t. This is exactly what is expressed in the proviso, i.e., that t must be an instance
of the type class (overloading group) Ord, which contains the overloaded operator <.

Thus, it is permissible to apply sort to lists of Integers or lists of Bools, because those types are
instances of Ord, but it is not permissible to apply sort to a list of, say, some interface type Ifc
(assuming Ifc is not an instance of the Ord type class).

The syntax of provisos is the following:
Provisos = provisos ( proviso { , proviso })
Proviso = Identifier #(type { , type })

In each proviso, the Identifier is the name of type class (overloading group). In most provisos, the
type class name T is followed by a single type ¢, and can be read as a simple assertion that ¢ is an
instance of T, i.e., that the overloaded functions of type class T' are defined for the type ¢. In some
provisos the type class name T may be followed by more than one type t1, ..., t, and these express
more general relationships. For example, a proviso like this:

provisos (Bits#(macAddress, 48))

can be read literally as saying that the types macAddress and 48 are in the Bits type class, or
can be read more generally as saying that values of type macAddress can be converted to and from
values of the type bit [47:0] using the pack and unpack overloaded functions of type class Bits.

We sometimes also refer to provisos as contexts, meaning that they constrain the types that may be
used within the construct to which the provisos are attached.

Occasionally, if the context is too weak, the compiler may be unable to figure out how to resolve an
overloading. Usually the compiler’s error message will be a strong hint about what information is
missing. In these situations it may be necessary for the programmer to guide the compiler by adding
more type information to the program, in either or both of the following ways:

e Add a static type assertion (Section 10.10) to some expression that narrows down its type.

e Add a proviso to the surrounding construct.

8.2 Type class declarations

A new class is declared using the following syntax:

typeclassDef = typeclass typeclasslde typeFormals [ provisos |
[ typedepends | ;
{ overloadedDef }
endtypeclass [ : typeclasslde ]

typeclasslde = Identifier
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typeFormals = # ( typeFormal { , typeFormal })
typeFormal = [ numeric | string | type typelde
typedepends ::= dependencies ( typedepend { , typedepend } )
typedepend = typelist determines typelist
typelist = typelde
| Ctypelde { , typelde } )
overloadedDef = functionProto
| varDecl

The typeclasslde is the newly declared class name. The typeFormals represent the types that will be
instances of this class. These typeFormals may themselves be constrained by provisos, in which case
the classes named in provisos are called the “super type classes” of this type class. Type dependencies
(typedepends) are relevant only if there are two or more type parameters; the typedepends comes after
the typeclass’s provisos (if any) and before the semicolon. The overloadedDefs declare the overloaded
variables or function names, and their types.

Example (from the Standard Prelude package):

typeclass Literal#(type a);

function a fromInteger (Integer x);

function Bool inLiteralRange(a target, Integer i);
endtypeclass: Literal

This defines the type class Literal. Any type a that is an instance of Literal must have an
overloaded function called fromInteger that converts an Integer value into the type a. In fact,
this is the mechanism that BSV uses to interpret integer literal constants, e.g., to resolve whether a
literal like 6847 is to be interpreted as a signed integer, an unsigned integer, a floating point number,
a bit value of 10 bits, a bit value of 8 bits, etc. (See Section 2.3.1 for a more detailed description.).

The typeclass also provides a function inLiteralRange that takes an argument of type a and an
Integer and returns a Bool. In the standard Literal typeclass this boolean indicates whether or
not the supplied Integer is in the range of legal values for the type a.

Example (from a predefined type class in BSV):

typeclass Bounded#(type a);
a minBound;
a maxBound;
endtypeclass

This defines the type class Bounded. Any type a that is an instance of Bounded will have two values
called minBound and maxBound that, respectively, represent the minimum and maximum of all values
of this type.

Example (from a predefined type class in BSV):°

typeclass Arith #(type data_t)
provisos (Literal#(data_t));
function data_t \+ (data_t x, data_t y);
function data_t \- (data_t x, data_t y);
function data_t negate (data_t x);

9We are using Verilog’s notation for escaped identifiers to treat operator symbols as ordinary identifiers. The
notation allows an identifier to be constructed from arbitrary characters beginning with a backslash and ending with
a whitespace (the backslash and whitespace are not part of the identifier.)
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function data_t \* (data_t x, data_t y);

function data_t \/ (data_t x, data_t y);

function data_t \% (data_t x, data_t y);
endtypeclass

This defines the type class Arith with super type class Literal, i.e., the proviso states that in order
for a type data_t to be an instance of Arith it must also be an instance of the type class Literal.
Further, it has six overloaded functions with the given names and types. Said another way, a type
that is an instance of the Arith type class must have a way to convert integer literals into that type,
and it must have addition, subtraction, negation, multiplication, and division defined on it.

The semantics of a dependency say that once the types on the left of the determines keyword are
fixed, the types on the right are uniquely determined. The types on either side of the list can be a
single type or a list of types, in which case they are enclosed in parentheses.

Example of a typeclass definition specifying type dependencies:

typeclass Connectable #(type a, type b)
dependencies (a determines b, b determines a);
module mkConnection#(a x1, b x2) (Empty);
endtypeclass

For any type t we know that Get#(t) and Put#(t) are connectable because of the following decla-
ration in the GetPut package:

instance Connectable#(Get#(element_type), Put#(element_type));

In the Connectable dependency above, it states that a determines b. Therefore, you know that if a
is Get#(t), the only possibility for b is Put#(t).

Example of a typeclass definition with lists of types in the dependencies:

typeclass Extend #(type a, type b, type c)

dependencies ((a,c) determines b, (b,c) determines a);
endtypeclass

An example of a case where the dependencies are not commutative:

typeclass Bits#(type a, type sa)
dependencies (a determines sa);
function Bit#(sa) pack(a x);
function a unpack (Bit#(sa) x);
endtypeclass

In the above example, if a were UInt#(16) the dependency would require that b had to be 16; but
the fact that something occupies 16 bits by no means implies that it has to be a UInt.

8.3 Instance declarations

A type can be declared to be an instance of a class in two ways, with a general mechanism or with
a convenient shorthand. The general mechanism of instance declarations is the following:

typeclassInstanceDef ::= instance typeclasslde # ( type { , type } ) [ provisos] ;
{ warAssign ; | functionDef | moduleDef }
endinstance [ : typeclasslde |
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This says that the types are an instance of type class typeclasslde with the given provisos. The
varAssigns, functionDefs and moduleDefs specify the implementation of the overloaded identifiers
of the type class.

Example, declaring a type as an instance of the Eq typeclass:

typedef enum { Red, Blue, Green } Color;

instance Eq#(Color);
function Bool \== (Color x, Color y); //must use \== with a trailing

return True; //space to define custom instances
endfunction //of the Eq typeclass
endinstance

The shorthand mechanism is to attach a deriving clause to a typedef of an enum, struct or tagged
union and let the compiler do the work. In this case the compiler chooses the “obvious” implementa-
tion of the overloaded functions (details in the following sections). The only type classes for which
deriving can be used for general types are Bits, Eq, Bounded, and FShow. Furthermore, deriving
can be used for any class if the type is a data type that is isomorphic to a type that has an instance
for the derived class.

derives = deriving ( typeclasslde { , typeclasslde } )

Example:

typedef enum { Red, Blue, Green } Color deriving (Eq);

8.4 The Bits type class (overloading group)

The type class Bits contains the types that are convertible to bit strings of a certain size. Many
constructs have membership in the Bits class as a proviso, such as putting a value into a register,
array, or FIFO.

Example: The Bits type class definition (which is actually predefined in BSV) looks something like
this:

typeclass Bits#(type a, type n);
function Bit#(n) pack (a x);
function a unpack (Bit#(n) y);
endtypeclass

Here, a represents the type that can be converted to/from bits, and n is always instantiated by a
size type (Section 4) representing the number of bits needed to represent it. Implementations of
modules such as registers and FIFOs use these functions to convert between values of other types
and the bit representations that are really stored in those elements.

Example: The most trivial instance declaration states that a bit-vector can be converted to a bit
vector, by defining both the pack and unpack functions to be identity functions:

instance Bits#(Bit#(k), k);
function Bit#(k) pack (Bit#(k) x);
return Xx;
endfunction: pack

function Bit#(k) unpack (Bit#(k) x);
return x;
endfunction: unpack
endinstance
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Example:
typedef enum { Red, Green, Blue } Color deriving (Eq);

instance Bits#(Color, 2);
function Bit#(2) pack (Color c);

if (c == Red) return 3;
else if (¢ == Green) return 2;
else return 1; // (c == Blue)

endfunction: pack

function Color unpack (Bit#(2) x);

if (x == 3) return Red;
else if (x == 2) return Green;
else if (x == 1) return Blue;

else 7 //Illegal opcode; return unspecified value
endfunction: unpack
endinstance

Note that the deriving (Eq) phrase permits us to use the equality operator == on Color types
in the pack function. Red, Green and Blue are coded as 3, 2 and 1, respectively. If we had used
the deriving(Bits) shorthand in the Color typedef, they would have been coded as 0, 1 and 2,
respectively (Section 8.6).

8.5 The Size0f pseudo-function

The pseudo-function Size0f#(t) can be applied to a type t to get the numeric type representing its
bit size. The type t must be in the Bits class, i.e., it must already be an instance of Bits#(t,n),
either through a deriving clause or through an explicit instance declaration. The Size0f function
then returns the corresponding bit size n. Note that Size0f returns a numeric type, not a numeric
value, i.e., the output of SizeOf can be used in a type expression, and not in a value expression.

Size0f, which converts a type to a (numeric) type, should not be confused with the pseudo-function
valueof, described in Section 4.2.1, which converts a numeric type to a numeric value.

Example:

typedef Bit#(8) MyType;
// MyType is an alias of Bit#(8)

typedef Size0f#(MyType) NumberOfBits;
// Number0fBits is a numeric type, its value is 8

Integer ordinaryNumber = valueOf (NumberOfBits) ;
// valueOf converts a numeric type into Integer

8.6 Deriving Bits

When attaching a deriving(Bits) clause to a user-defined type, the instance derived for the Bits
type class can be described as follows:

e For an enum type it is simply an integer code, starting with zero for the first enum constant

and incrementing by one for each subsequent enum constant. The number of bits used is the
minimum number of bits needed to represent distinct codes for all the enum constants.
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e For a struct type it is simply the concatenation of the bits for all the members. The first
member is in the leftmost bits (most significant) and the last member is in the rightmost bits
(least significant).

e For a tagged union type, all values of the type occupy the same number of bits, regardless of
which member it belongs to. The bit representation consists of two parts—a tag on the left
(most significant) and a member value on the right (least significant).

The tag part uses the minimum number of bits needed to code for all the member names. The
first member name is given code zero, the next member name is given code one, and so on.

The size of the member value part is always the size of the largest member. The member value
is stored in this field, right-justified (i.e., flush with the least-significant end). If the member
value requires fewer bits than the size of the field, the intermediate bits are don’t-care bits.

Example. Symbolic names for colors:
typedef enum { Red, Green, Blue } Color deriving (Eq, Bits);

This is the same type as in Section 8.4 except that Red, Green and Blue are now coded as 0, 1 and
2, instead of 3, 2, and 1, respectively, because the canonical choice made by the compiler is to code
consecutive labels incrementing from 0.

Example. The boolean type can be defined in the language itself:
typedef enum { False, True} Bool deriving (Bits);

The type Bool is represented with one bit. False is represented by 0 and True by 1.

Example. A struct type:
typedef struct { Bit#(8) foo; Bit#(16) bar } Glurph deriving (Bits);

The type Glurph is represented in 24 bits, with foo in the upper 8 bits and bar in the lower 16 bits.

Example. Another struct type:
typedef struct{ int x; int y } Coord deriving (Bits);

The type Coord is represented in 64 bits, with x in the upper 32 bits and y in the lower 32 bits.

Example. The Maybe type from Section 7.3:

typedef union tagged {
void Invalid;
a Valid;
} Maybe#(type a)
deriving (Bits);

is represented in 1 + n bits, where n bits are needed to represent values of type a. If the leftmost
bit is 0 (for Invalid) the remaining n bits are unspecified (don’t-care). If the leftmost bit is 1 (for
Valid) then the remaining n bits will contain a value of type a.
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8.7 Deriving Eq

The Eq type class contains the overloaded operators == (logical equality) and != (logical inequality):

typeclass Eq#(type a);
function Bool \== (a x1, a x2);
function Bool \/= (a x1, a x2);
endtypeclass: Eq

When deriving(Eq) is present on a a user-defined type definition ¢, the compiler defines these
equality /inequality operators for values of type ¢. It is the natural recursive definition of these
operators, i.e.,

e If ¢ is an enum type, two values of type t are equal if they represent the same enum constant.

e If ¢ is a struct type, two values of type ¢ are equal if the corresponding members are pairwise
equal.

e If ¢ is a tagged union type, two values of type ¢ are equal if they have the same tag (member
name) and the two corresponding member values are equal.

8.8 Deriving Bounded

The predefined type class Bounded contains two overloaded identifiers minBound and maxBound rep-
resenting the minimum and maximum values of a type a:

typeclass Bounded#(type a);
a minBound;
a maxBound;
endtypeclass

The clause deriving(Bounded) can be attached to any user-defined enum definition ¢, and the
compiler will define the values minBound and maxBound for values of type t as the first and last enum
constants, respectively.

The clause deriving(Bounded) can be attached to any user-defined struct definition ¢ with the
proviso that the type of each member is also an instance of Bounded. The compiler-defined minBound
(or maxBound) will be the struct with each member having its respective minBound (respectively,
maxBound).

8.9 Deriving FShow

The intent of the FShow type class is to format values for use with the $display family of functions.

When attaching a deriving (FShow) clause to a user-defined type, the instance derived for the FShow
type class can be described as follows:

e For an enum type, the output contains the enumerated value.

Example:
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typedef enum { Red, Blue, Green } Colors deriving (FShow) ;

$display("Basic enum");
Colors be0 = Red;
Colors bel = Blue;
Colors be2 = Green;
$display(fshow(be0));
$display(fshow(bel));
$display(fshow(be2));

Displays:

Basic enum
Red

Blue

Green

e For a struct type, the output contains the struct name, with each value prepended with the
name of the field. The values are formatted with FShow according to the data type.

Struct_name {fieldl_name: valuel, field2_name: value2....}

Example

typedef struct {
Bool val_bool;
Bit#(8) val_bit;
UInt#(16) val_uint;
Int#(32) val_int;

} BasicS deriving (FShow) ;

$display("Basic struct");
BasicS bsl =
BasicS { val_bool: True, val_bit: 22,
val_uint: ’hABCD, val_int: - hABCD };
$display(fshow(bsl));

Displays:

Basic struct
BasicS { val_bool: True, val_bit: ’hi16, val_uint: 43981, val_int: -43981 }

e For a tagged union type, the output contains the name of the tag followed by the value. The
values are formatted with FShow according to the data type.

tagged Tagl valuel
tagged Tag2 value2

Example

typedef union tagged {
Bool Val_bool;
Bit#(8) Val_bit;
UInt#(16) Val_uint;
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Int#(32) Val_int;
} BasicU deriving (FShow) ;

$display("Basic tagged union");
BasicU bu0O = tagged Val_bool True;
BasicU bul = tagged Val_bit 22;
BasicU bu2 = tagged Val_uint ’hABCD;
BasicU bu3 = tagged Val_int -’hABCD;
$display(fshow(bu0));
$display(fshow(bul));

$display (fshow(bu2));

$display (fshow(bu3));

Displays:

Basic tagged union

tagged Val_bool True
tagged Val_bit ’hi6
tagged Val_uint 43981
tagged Val_int -43981

8.10 Deriving type class instances for isomorphic types

Generally speaking, the deriving(...) clause can only be used for the predefined type classes
Bits, Eq, Bounded, and FShow. However there is a special case where it can be used for any type
class. When a user-defined type t is isomorphic to an existing type t/, then all the functions on #
automatically work on ¢, and so the compiler can trivially derive a function for ¢ by just using the
corresponding function for ¢'.

There are two situations where a newly defined type is isomorphic to an old type: a struct or tagged
union with precisely one member. For example:

typedef struct { ¢ x; } t deriving (anyClass);
typedef union tagged {t' X; } ¢t deriving (anyClass);

One sometimes defines such a type precisely for type-safety reasons because the new type is distinct
from the old type although isomorphic to it, so that it is impossible to accidentally use a t value in
a t' context and vice versa. Example:

typedef struct { UInt#(32) x; } Apples deriving (Literal, Arith);

Apples five;

five = 5; // ok, since RHS applies ’fromInteger()’ from Literal
// class to Integer 5 to create an Apples value

function Apples eatApple (Apples n);
return n - 1; // ’1° is converted to Apples by fromInteger()
// ’-’ is available on Apples from Arith class
endfunction: eatApple

The typedef could also have been written with a singleton tagged union instead of a singleton struct:

typedef union tagged { UInt#(32) X; } Apples deriving (Literal, Arith);
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8.11 Monad

Note: This is an advanced topic that may be skipped on first reading.

The Monad typeclass (idea taken directly from Haskell) is an abstraction which allows different
composition strategies and is useful for combining computations into more complex computations.
Monads are certain types with bind and return operations that satisfy certain mathematical prop-
erties.

BSV programmers use the Module and Action monads all the time (often without being aware of
it). The Monad typeclass allows you to define and use new monads, just as you can in Haskell. Tt is a
rather large subject to describe all the possibilities and opportunities of monad-based programming;
we refer readers to the extensive literature on the topic, particularly in the Haskell ecosystem.

9 Variable declarations and statements

Statements can occur in various contexts: in packages, modules, function bodies, rule bodies, action
blocks and actionvalue blocks. Some kinds of statements have been described earlier because they
were specific to certain contexts: module definitions (moduleDef) and instantiation (modulelnst),
interface declarations (interfaceDecl), type definitions (typeDef), method definitions (methodDef)
inside modules, rules (rule) inside modules, and action blocks (actionBlock) inside modules.

Here we describe variable declarations, register assignments, variable assignments, loops, and func-
tion definitions. These can be used in all statement contexts.

9.1 Variable and array declaration and initialization

Variables in BSV are used to name intermediate values. Unlike Verilog and SystemVerilog, variables
never represent state, i.e., they do not hold values over time. Every variable’s type must be declared,
after which it can be bound to a value one or more times.

One or more variables can be declared by giving the type followed by a comma-separated list of
identifiers with optional initializations:

varDecl = type varlnit { , varlnit } ;
varInit = identifier [ arrayDims || = expression |
arrayDims = [ expression 1 { [ expression ] }

The declared identifier can be an array (when arrayDims is present). The expressions in arrayDims
represent the array dimensions, and must be constant expressions (i.e., computable during static
elaboration). The array can be multidimensional.

Note that array variables are distinct from the RegFile and Vector data types (see Libraries Ref-
erence Guide). Array variables are just a structuring mechanism for values, whereas the RegFile
type represents a particular hardware module, like a register file, with a limited number of read and
write ports. In many programs, array variables are used purely for static elaboration, e.g., an array
of registers is just a convenient way to refer to a collection of registers with a numeric index.

The type of array variables is generally expressed anonymously, using the bracket syntax. It is
equivalent to the Array type (see Libraries Reference Guide), which can be used when an explicit
type name is needed.

Each declared variable can optionally have an initialization.

Example. Declare two Integer variables and initialize them:
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Integer x = 16, y = 32;

Example. Declare two array identifiers a and b containing int values at each index:
int a[20], b[40];

Example. Declare an array of 3 Int#(5) values and initialize them:
Int#(5) xs[3] = {14, 12, 9};

Example. Declare an array of 3 arrays of 4 Int#(5) values and initialize them:

Int#(5) xs[3]1[4] = {{1,2,3,4},
{5,6,7,8%},
{9,10,11,12}};

Example. The array values can be polymorphic, but they must defined during elaboration:

Get #(a) gs[3] = {g0,g2, g2};

9.2 Variable assignment

A variable can be bound to a value using assignment:
varAssign == [Value = expression ;

[Value == identifier
| WValue . identifier
| [Value [ expression ]
| [Value [ expression : expression ]

The left-hand side (IValue) in its simplest form is a simple variable (identifier).

Example. Declare a variable wordSize to have type Integer and assign it the value 16:

Integer wordSize;
wordSize = 16;

Multiple assignments to the same variable are just a shorthand for a cascaded computation. Example:

int x;

x = 23;

// Here, x represents the value 23

x = ifc.meth (34);

// Here, x represents the value returned by the method call

x=x + 1;

// Here, x represents the value returned by the method call, plus 1

Note that these assignments are ordinary, zero-time assignments, i.e., they never represent a dynamic
assignment of a value to a register. These assignments only represent the convenient naming of an
intermediate value in some zero-time computation. Dynamic assignments are always written using
the non-blocking assignment operator <=, and are described in Section 9.4.

In general, the left-hand side ({Value) in an assignment statement can be a series of index- and field-
selections from an identifier representing a nesting of arrays, structs and unions. The array-indexing
expressions must be computable during static elaboration.
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For bit vectors, the left-hand side (IValue) may also be a range between two indices. The indices must
be computable during static elaboration, and, if the indices are not literal constants, the right-hand
side of the assignment should have a defined bit width. The size of the updated range (determined
by the two literal indices or by the size of the right-hand side) must be less than or equal to the size
of the target bit vector.

Example. Update an array variable b:
b[15] = foo.bar(x);
Example. Update bits 15 to 8 (inclusive) of a bit vector b:
b[15:8] = foo.bar(x);
Example. Update a struct variable (using the processor example from Section 7.3):
cpu.pc = cpu.pc + 4;
Semantically, this can be seen as an abbreviation for:
cpu = Proc { pc: cpu.pc + 4, rf: cpu.rf, mem: cpu.mem };

i.e., it reassigns the struct variable to contain a new struct value in which all members other than
the updated member have their old values. The right-hand side is a struct expression; these are
described in Section 10.11.

Update of tagged union variables is done using normal assignment notation, i.e., one replaces the
current value in a tagged union variable by an entirely new tagged union value. In a struct it makes
sense to update a single member and leave the others unchanged, but in a union, one member
replaces another. Example (extending the previous processor example):

typedef union tagged {
bit [4:0] Register;
bit [21:0] Literal;
struct {
bit [4:0] regAddr;
bit [4:0] reglndex;
} Indexed;
} InstrOperand;

InstrOperand orand;
orand = tagged Indexed { regAddr:3, regIlndex:4 };
orand = tagged Register 23;

The right-hand sides of the assignments are tagged union expressions; these are described in Section
10.11.

9.3 Implicit declaration and initialization

The let statement is a shorthand way to declare and initialize a variable in a single statement. A
variable which has not been declared can be assigned an initial value and the compiler will infer the
type of the variable from the expression on the right hand side of the statement:

varDecl = let identifier = expression ;

Example:
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let n = valueof (BuffSize);
The pseudo-function valueof returns an Integer value, which will be assigned to n at compile time.
Thus the variable n is assumed to have the type of Integer.
If the expression is the value returned by an actionvalue method, the notation will be:

varAssign = let identifier <- expression ;

Note the difference between this statement:
let ml1 = mldisplayfifo.first;

and this statement:
let z1 <- rndm.get;

In the first example, midisplayfifo.first is a value method; m1 is assigned the value and type
returned by the value method. In the latter, rndm.get is an actionvalue method; z1 is assigned the
value and type returned by the actionvalue method.

9.4 Register reads and writes

Register writes occur primarily inside rules and methods.

reg Write == [Value <= expression
| ( expression ) <= expression

The left-hand side must contain a writeable interface type, such as Reg#(¢) (for some type ¢ that
has a representation in bits). It is either an [Value or a parenthesized expression (e.g., the register
interface could be selected from an array of register interfaces or returned from a function). The
right-hand side must have the same type as the left-hand side would have if it were typechecked
as an expression (including read desugaring, as described below). BSV allows only the so-called
non-blocking assignments of Verilog, i.e., the statement specifies that the register gets the new value
at the end of the current cycle, and is only available in the next cycle.

Following BSV’s principle that all state elements (including registers) are module instances, and all
interaction with a module happens through its interface, a simple register assignment r<=e is just a
convenient alternative notation for a method call:

r._write (e)

Similarly, if r is an expression of type Reg# (%), then mentioning r in an expression is just a convenient
alternative notation for different method call:

r._read ()

The implicit addition of the ._read method call to variables of type Reg# () is the simplest example
of read desugaring.

Example. Instantiating a register interface and a register, and using it:

Reg#(int) r(Q); // create a register interface
mkReg#(0) the_r (r); // create a register the_r with interface r
rule ...
r<=r1+ 1; // Convenient notation for: r._write (r._read() + 1)
endrule
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9.4.1 Registers and square-bracket notation

Register writes can be combined with the square-bracket notation.
reg Write == [Value arrayIndezes <= expression
arraylndexes n= [ expression ] { [ expression] }

There are two different ways to interpret this combination. First, it can mean to select a register
out of a collection of registers and write it.

Example. Updating a register in an array of registers:
List#(Reg#(int)) regs;
regs[3] <= regs[3] + 1; // increment the register at position 3

Note that when the square-bracket notation is used on the right-hand side, read desugaring is
also applied!?. This allows the expression regs[3] to be interpreted as a register read without
unnecessary clutter.

The indexed register assignment notation can also be used for partial register updates, when the
register contains an array of elements of some type ¢ (in a particular case, this could be an array
of bits). This interpretation is just a shorthand for a whole register update where only the selected
element is updated. In other words,

x[j] <= v;
can be a shorthand for:
x <= replace (x, j, v);

where replace is a pure function that takes the whole value from register x and produces a whole
new value with the j’th element replaced by v. The statement then assigns this new value to the
register x.

It is important to understand the tool infers the appropriate meaning for an indexed register write
based on the types available and the context:

Reg# (Bit#(32)) x;

x[3] <= e;
List#(Reg#(a)) x;
y[3] <= e;

In the former case, x is a register containing an array of items (in this example a bit vector), so the
statement updates the third item in this array (a single bit) and stores the updated bit vector in
the register. In the latter case, y is an array of registers, so register at position 3 in the array is
updated. In the former case, multiple writes to different indices in a single rule with non-exclusive
conditions are forbidden (because they would be multiple conflicting writes to the same register)!!,
writing the final result back to the register. In the latter case, multiple writes to different indices
will be allowed, because they are writes to different registers (though multiple writes to the same
index, under non-exclusive conditions would not be allowed, of course).

It also is possible to mix these notations, i.e., writing a single statement to perform a partial update
of a register in an array of registers.

Example: Mixing types of square-bracket notation in a register write

107o suppress read desugaring use asReg or asIfc
L1Tf multiple partial register writes are desired the best thing to do is to assign the register’s value to a variable and
then do cascaded variable assignments (as described in section 9.2)
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List#(Reg#(bit[3:0]1)) ys;

y[4]1[3] <= e; // Update bit 3 of the register at position 4

9.4.2 Registers and range notation
Just as there is a range notation for bit extraction and variable assignments, there is also a range
notation for register writes.

reg Write == [Value [ expression : expression ] <= expression

The index expressions in the range notation follow the same rules as the corresponding expressions
in variable assignment range updates (they must be static expressions and if they are not literal
constants the right-hand side should have a defined bit width). Just as the indexed, partial register
writes described in the previous subsection, multiple range-notation register writes cannot be mixed
in the same rule'?.

Example: A range-notation register write

Reg#(Bit#(32)) r;

r[23:12] <= e; // Update a 12-bit range in the middle of r

9.4.3 Registers and struct member selection

reg Write == [Value . identifier <= expression

As with the square-bracket notation, a register update involving a field selection can mean one of
two things. First, for a register containing a structure, it means update the particular field of the
register value and write the result back to the register.

Example: Updating a register containing a structure

typedef struct { Bit#(32) a; Bit#(16) b; } Foo deriving(Bits);
Reg# (Foo) r;
r.a <= 17;

Second, it can mean to select the named field out of a compile-time structure that contains a register
and write that register.

Example: Writing a register contained in a structure

typedef struct { Reg#(Bit#(32)) c; Reg#(Bit#(16)) d; } Baz;

Baz b;

b.a <= 23;

In both cases, the same notation is used and the compiler infers which interpretation is appropriate.

As with square-bracket selection, struct member selection implies read desugaring, unless inhibited
by asReg or asIfc.

12 As described in the preceding footnote, using variable assignment is the best way to achive this effect, if desired.
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9.5 Begin-end statements

A begin-end statement is a block that allows one to collect multiple statements into a single state-
ment, which can then be used in any context where a statement is required.

<ctzt>DBeginEndStmt = begin [ : identifier ]
{ <ctat>Stmt }
end [ : identifier |

The optional identifier labels are currently used for documentation purposes only; in the future they
may be used for hierarchical references. The statements contained in the block can contain local
variable declarations and all the other kinds of statements. Example:

module mkBeginEnd#(Bit#(2) sel) Q;
Reg#(Bit#(4)) a <- mkReg(0);
Regi (Bool) done <- mkReg(False);

rule decode (!done);
case (sel)
2’°b00: a <= 0;
2’°b01: a <=
2'b10: a <= 2;
2°b11: begin

[ErY
.o

a <= 3; //in the 2’bll case we don’t want more than
done <= True; //one action done, therefore we add begin/end
end
endcase
endrule

endmodule

9.6 Conditional statements

Conditional statements include if statements and case statements. An if statement contains a
predicate, a statement representing the true arm and, optionally, the keyword else followed by a
statement representing the false arm.

<ctzt>1If == 1if ( condPredicate )
<ctxt>Stmt
[ else
< ctxt>Stmt |
condPredicate = exprOrCondPattern { &&& exprOrCondPattern }
exprOrCondPattern  ::= expression

| expression matches pattern

If-statements have the usual semantics— the predicate is evaluated, and if true, the true arm is exe-
cuted, otherwise the false arm (if present) is executed. The predicate can be any boolean expression.
More generally, the predicate can include pattern matching, and this is described in Section 11, on
pattern matching.

There are two kinds of case statements: ordinary case statements and pattern-matching case state-
ments. Ordinary case statements have the following grammar:

<ctzt>Case == case ( expression )
{ <ctat>Caseltem }
[ <ctzt>Defaultltem |
endcase
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<ctzt>Caseltem = expression { , expression } : <ctxt>Stmt
<ctzt>Defaultltem = default [ : | <ctat>Stmt

Each case item contains a left-hand side and a right-hand side, separated by a colon. The left-
hand side contains a series of expressions, separated by commas. The case items may optionally be
followed, finally, by a default item (the colon after the default keyword is optional).

Case statements are equivalent to an expansion into a series of nested if-then-else statements. For
example:

case (el)
e2, e3 . 82;
ed . s4;
eb5, e6, e7: sb;
default : s6;
endcase

is equivalent to:

x1 = el; // where x1 is a new variable:
if (x1 == e2) 82;
else if (x1 == e3) s82;
else if (x1 == ed) s4;

else if (x1 == eb) sb;
else if (x1 == e6) sb;
else if (x1 == e7) sb5;
else s6;

The case expression (el) is evaluated once, and tested for equality in sequence against the value
of each of the left-hand side expressions. If any test succeeds, then the corresponding right-hand
side statement is executed. If no test succeeds, and there is a default item, then the default item’s
right-hand side is executed. If no test succeeds, and there is no default item, then no right-hand side
is executed.

Example:

module mkConditional#(Bit#(2) sel) (O);
Reg#(Bit#(4)) a <- mkReg(0);
Reg# (Bool) done <- mkReg(False);

rule decode ;
case (sel)
2°b00:
2’b01:
2’b10:
2’b11:
endcase
endrule

-

PP
A
]

W N = O

.o

rule finish ;
if (a == 3)
done <= True;
else
done <= False;
endrule
endmodule

Pattern-matching case statements are described in Section 11.
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9.7 Loop statements

BSV has for loops and while loops.

It is important to note that this use of loops does not express time-based behavior. Instead, they are
used purely as a means to express zero-time iterative computations, i.e., they are statically unrolled
and express the concatenation of multiple instances of the loop body statements. In particular, the
loop condition must be evaluable during static elaboration. For example, the loop condition can
never depend on a value in a register, or a value returned in a method call, which are only known
during execution and not during static elaboration.

See Section 12 on FSMs for an alternative use of loops to express time-based (temporal) behavior.

9.7.1 While loops
<ctxt>While == while ( expression )
<ctzt>Stmt

While loops have the usual semantics. The predicate expression is evaluated and, if true, the loop
body statement is executed, and then the while loop is repeated. Note that if the predicate initially
evaluates false, the loop body is not executed at all.

Example. Sum the values in an array:

int a[32];
int x = 0;
int j = 0;

while (j < 32)
x = x + aljl;

9.7.2 For loops

<ctxt>For uw= for ( forInit ; forTest ; forIncr )
<ctxt>Stmt
forInit = forOldInit | forNewlnit
forOldInit = simpleVarAssign { , simpleVarAssign }
simple VarAssign == ddentifier = expression
forNewlInit = type identifier = expression { , simpleVarDeclAssign }
simpleVarDeclAssign == | type | identifier = expression
forTest n= expression
forIner == warlner { , varlner }
varlner == ddentifier = expression

The forInit phrase can either initialize previously declared variables (forOldInit), or it can declare
and initialize new variables whose scope is just this loop (forNewlnit). They differ in whether or
not the first thing after the open parenthesis is a type.

In forOldInit, the initializer is just a comma-separated list of variable assignments.

In forNewlnit, the initializer is a comma-separated list of variable declarations and initializations.
After the first one, not every initializer in the list needs a type; if missing, the type is the nearest
type earlier in the list. The scope of each variable declared extends to subsequent initializers, the
rest of the for-loop header, and the loop body statement.

Example. Copy values from one array to another:

75



Reference Guide BSV

int al32], b[32];

for (int i = 0, j = itoffset; i < 32-offset; i = i+1l, j = j+1)
ali] = b[jl;

9.8 Function definitions

A function definition is introduced by the function keyword. This is followed by the type of the
function return-value, the name of the function being defined, the formal arguments, and optional
provisos (provisos are discussed in more detail in Section 8). After this is the function body and,
finally, the endfunction keyword that is optionally labelled again with the function name. Each
formal argument declares an identifier and its type.

functionDef = [ attributelnstances |
functionProto
functionBody
endfunction [ : identifier ]
functionProto = function type identifier ([ functionFormals |) [ provisos | ;
SfunctionFormals = functionFormal { , functionFormal }
SfunctionFormal w= type identifier

The function body can contain the usual repertoire of statements:

functionBody == actionBlock
| action ValueBlock
| { functionBodyStmt }

functionBodyStmt n= returnStmt
| varDecl | varAssign
| functionDef
| moduleDef
| < functionBody> BeginEndStmt
| <functionBody>1If | <functionBody>Case
| <functionBody>For | <functionBody> While

returnStmt 1= return expression ;

A value can be returned from a function in two ways, as in SystemVerilog. The first method is to
assign a value to the function name used as an ordinary variable. This “variable” can be assigned
multiple times in the function body, including in different arms of conditionals, in loop bodies, and
so on. The function body is viewed as a traditional sequential program, and value in the special
variable at the end of the body is the value returned. However, the “variable” cannot be used in
an expression (e.g., on the right-hand side of an assignment) because of ambiguity with recursive
function calls.

Alternatively, one can use a return statement anywhere in the function body to return a value
immediately without any further computation. If the value is not explicitly returned nor bound, the
returned value is undefined.

Example. The boolean negation function:
function Bool notFn (Bool x);
if (x) notFn = False;

else notFn = True;
endfunction: notFn
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Example. The boolean negation function, but using return instead:

function Bool notFn (Bool x);
if (x) return False;
else return True;

endfunction: notFn

Example. The factorial function, using a loop:

function int factorial (int n);
int £ =1, j = 0;
while (j < n)

begin
f=1f=xj;
i=i+y
end

factorial = £;
endfunction: factorial

Example. The factorial function, using recursion:

function int factorial (int n);

if (n <= 1) return (1);

else return (n * factorial (n - 1));
endfunction: factorial

9.8.1 Definition of functions by assignment

A function can also be defined using the following syntax.

functionProto = function type identifier ( [ functionFormals | ) [ provisos ]
= exrpression ;

The part up to and including the provisos is the same as the standard syntax shown in Section 9.8.
Then, instead of a semicolon, we have an assignment to an expression that represents the function
body. The expression can of course use the function’s formal arguments, and it must have the same
type as the return type of the function.

Example 1. The factorial function, using recursion (from above:)
function int factorial (int n) = (n<=1 ? 1 : n * factorial(n-1));
Example 2. Turning a method into a function. The following function definition:

function int f1 (FIFO#(int) i);
return i.first();
endfunction

could be rewritten as:
function int f2(FIFO#(int) i) = i.firstQ);
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9.8.2 Function types

The function type is required for functions defined at the top level of a package and for recursive
functions (such as the factorial examples above). You may choose to leave out the types within a
function definition at lower levels for non-recursive functions,

If not at the top level of a package, Example 2 from the previous section could be rewritten as:

function f1(i);
return i.first();
endfunction

or, if defining the function by assignment:
function f1 (i) = i.firstQ;

Note that currently incomplete type information will be ignored. If, in the above example, partial
type information were provided, it would be the same as no type information being provided. This
may cause a type-checking error to be reported by the compiler.

function int £f1(i) = i.first(); // The function type int is specified
// The argument type is not specified

9.8.3 Higher-order functions

Note: This is an advanced topic that may be skipped on first reading.

In BSV it is possible to write an expression whose value is a function value. These function values
can be passed as arguments to other functions, returned as results from functions, and even carried
in data structures.

Example: the function map, as defined in the package Vector (see Libraries Reference Guide):

function Vector#(vsize, b_type) map (function b_type func (a_type x),
Vector#(vsize, a_type) xvect);
Vector#(vsize, b_type) yvect = newVector;

0; j < valueof(vsize); j=j+1)

for (Integer j =
= func (xvectl[jl);

yvect[j]

return yvect;
endfunction: map

function int sqr (int x);
return x * X;
endfunction: sqr

Vector#(100,int) avect ...; // initialize vector avect

Vector#(100,int) bvect = map (sqr, avect);

The function map is polymorphic, i.e., is defined for any size type vsize and value types a_type and
b_type. It takes two arguments:

78



BSV Reference Guide

e A function func with input of type a_type and output of type b_type.

e A vector xvect of size vsize containing values of type a_type.

Its result is a new vector yvect that is also of size vsize and containing values of type b_type,
such that yvect [j1=func(xvect[j]). In the last line of the example, we call map passing it the sqr
function and the vector avect to produce a vector bvect that contains the squared versions of all
the elements of vector avect.

Observe that in the last line, the expression sqr is a function-valued expression, representing the
squaring function. It is not an invocation of the sqr function. Similarly, inside map, the identifier
func is a function-valued identifier, and the expression func (xsize [j]) invokes the function.

The function map could be called with a variety of arguments:

// Apply the extend function to each element of avect
Vector#(13, Bit#(5)) avect;
Vector#(13, Bit#(10)) bvect;

bvect = map(extend, avect);

or

// test all elements of avect for even-ness
Vector#(100,Bool) bvect = map (isEven, avect);

In other words, map captures, in one definition, the generic idea of applying some function to all
elements of a vector and returning all the results in another vector. This is a very powerful idea
enabled by treating functions as first-class values. Here is another example, which may be useful in
many hardware designs:

interface SearchableFIFO#(type element_type);
. usual enq() and deq() methods ...

method Bool search (element_type key);
endinterface: SearchableFIF0

module mkSearchableFIFO#(function Bool test_func
(element_type x, element_type key))
(SearchableFIF0#(element_type)) ;

method Bool search (element_type key);
. apply test_func(x, key) to each element of the FIFO,
. return OR of all results ...
endmethod: search
endmodule: mkSearchableFIFO0

The SearchableFIF0 interface is like a normal FIFO interface (contains usual enq() and deq()
methods), but it has an additional bit of functionality. It has a search() method to which you
can pass a search key key, and it searches the FIFO using that key, returning True if the search
succeeds.

Inside the mkSearchableFIF0 module, the method applies some element test predicate test_func to
each element of the FIFO and ORs all the results. The particular element-test function test_func to

79



Reference Guide BSV

be used is passed in as a parameter to mkSearchableFIF0. In one instantiation of mkSearchableFIF0
we might pass in the equality function for this parameter (“search this FIFO for this particular ele-
ment”). In another instantiation of mkSearchableFIF0 we might pass in the “greater-than” function
(“search this FIFO for any element greater than the search key”). Thus, a single FIFO definition cap-
tures the general idea of being able to search a FIFO, and can be customized for different applications
by passing in different search functions to the module constructor.

A final important point is that, in BSV, higher-order functions may be used in synthesizable code,
i.e., the compiler can produce RTL hardware. This often comes as a surprise to people familiar with
Verilog/SystemVerilog and VHDL. The key insight is that static elaboration effectively “flattens”
out all designs—higher-order functions (like ordinary functions) get substituted and inlined—and
there is no problem synthesizing the elaborated design.

10 Expressions

Expressions occur on the right-hand sides of variable assignments, on the left-hand and right-hand
side of register assignments, as actual parameters and arguments in module instantiation, function
calls, method calls, array indexing, and so on.

There are many kinds of primary expressions. Complex expressions are built using the conditional
expressions and unary and binary operators.

expression == condEzxpr
| operatorExpr
| exprPrimary

exprPrimary == ddentifier

intLiteral

realLiteral

stringLiteral
systemFunctionCall

( expression )

- -+ see other productions - - -

10.1 Don’t-care expressions

When the value of an expression does not matter, a don’t-care expression can be used. It is written

with just a question mark and can be used at any type. The compiler will pick a suitable value.
exprPrimary =7

A don’t-care expression is similar, but not identical to, the x value in Verilog, which represents an
unknown value. A don’t-care expression is unknown to the programmer, but represents a particular
fixed value chosen statically by the compiler.

The programmer is encouraged to use don’t-care values where possible, both because it is useful
documentation and because the compiler can often choose values that lead to better circuits.

Example:
module mkDontCare ();
// instantiating registers where the initial value is "Dontcare"

Reg#(Bit#(4)) a <- mkReg(?);
Reg# (Bit#(4)) b <- mkReg(?);
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Bool done = (a==b);

// defining a Variable with an initial value of "Dontcare"
Bool mybool = 7;

endmodule

10.2 Conditional expressions

Conditional expressions include the conditional operator and case expressions. The conditional
operator has the usual syntax:

condFExpr = condPredicate 7 expression : expression
condPredicate == exprOrCondPattern { &&& exprOrCondPattern }
exprOrCondPattern  ::= expression

| expression matches pattern

Conditional expressions have the usual semantics. In an expression e;7es:es, e; can be a boolean
expression. If it evaluates to True, then the value of e is returned; otherwise the value of ez is
returned. More generally, e; can include pattern matching, and this is described in Section 11, on
pattern matching

Example.

module mkCondExp ();

// instantiating registers
Reg#(Bit#(4)) a <- mkReg(0);
Reg#(Bit#(4)) b <- mkReg(0);

rule dostuff;
a <= (b>4) 7 2 : 10;

endrule
endmodule

Case expressions are described in Section 11, on pattern matching.

10.3 Unary and binary operators

operatorExpr = unop expression
\ expression binop expression

Binary operator expressions are built using the unop and binop operators listed in the following

table, which are a subset of the operators in SystemVerilog. The operators are listed here in order
of decreasing precedence.

81



Reference Guide

BSV

Unary and Binary Operators in order of Precedence
Operator Associativity | Comments
+ - - n/a Unary: plus, minus, logical not, bitwise invert
& n/a Unary: and bit reduction
& n/a Unary: nand bit reduction
| n/a Unary: or bit reduction
1 n/a Unary: nor bit reduction
" n/a Unary: xor bit reduction
R n/a Unary: xnor bit reduction
x / Left multiplication, division, modulus
+ - Left addition, subtraction
< >> Left left and right shift
<= >= < > Left comparison ops
= I= Left equality, inequality
Left bitwise and
- Left bitwise xor
R Left bitwise equivalence (xnor)
| Left bitwise or
&& Left logical and
[ Left logical or

Constructs that do not have any closing token, such as conditional statements and expressions, have

lowest precedence so that, for example,
el 7 e2 : e3 + e4
is parsed as follows:
el ? e2 : (e3 + e4)
and not as follows:

(el 7 e2 : e3) + e4

10.4 Bit concatenation and selection

Bit concatenation and selection are expressed in the usual Verilog notation:

exprPrimary = bitConcat | bitSelect
bitConcat = { expression { , expression } }
bitSelect = exprPrimary [ expression |

: expression | ]

In a bit concatenation, each component must have the type bit[m:0] (m>0, width m + 1). The
result has type bit[n:0] where n + 1 is the sum of the individual bit-widths (n>0).

In a bit or part selection, the exprPrimary must have type bit [m:0] (m>0), and the index expres-
sions must have an acceptable index type (e.g. Integer, Bit#(n), Int#(n), or UInt#(n)). With a
single index ([e]), a single bit is selected, and the output is of type bit[1:0]. With two indexes
([e1:e2]), e; must be > ey, and the indexes are inclusive, i.e., the bits selected go from the low
index to the high index, inclusively. The selection has type bit[k:0] where k + 1 is the width of
the selection and bit[0] is the least significant bit. Since the index expressions can in general be
dynamic values (e.g., read out of a register), the type-checker may not be able to figure out this type,
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in which case it may be necessary to use a type assertion to tell the compiler the desired result type
(see Section 10.10). The type specified by the type assertion need not agree with width specified by
the indexes— the system will truncate from the left (most-significant bits) or pad with zeros to the
left as necessary.

Example:

module mkBitConcatSelect ();

Bit#(3) a = 3’°b010; //a = 010
Bit#(7) b = 7’hbe; //b = 1011110
Bit#(10) abconcat = {a,b}; // = 0101011110
Bit#(4) bselect = b[6:3]; // = 1011

endmodule

In BSV programs one will sometimes encounter the Bit#(0) type. One common idiomatic example
is the type Maybe# (Bit#(0)) (see the Maybe#() type in Section 7.3). Here, the type Bit#(0) is just
used as a place holder, when all the information is being carried by the Maybe structure.

10.5 Begin-end expressions

A begin-end expression is like an “inline” function, i.e., it allows one to express a computation using
local variables and multiple variable assignments and then finally to return a value. A begin-end
expression is analogous to a “let block” commonly found in functional programming languages. It
can be used in any context where an expression is required.

exprPrimary w= beginEndErpr

beginEndExpr = begin [ : identifier ]
{ expressionStmt }
expression

end [ : identifier |

Optional identifier labels are currently used for documentation purposes only. The statements con-
tained in the block can contain local variable declarations and all the other kinds of statements.

expressionStmt = warDecl | varAssign
| JunctionDef
| moduleDef
| <expression> BeginEndStmt
| <expression>If | <expression>Case
| <expression>For | <ezpression>While

Example:
int z;
z = (begin
int x2 = x * x; // %2 is local, x from surrounding scope
int y2 =y * y; // y2 is local, y from surrounding scope
(x2 + y2); // returned value (sum of squares)
end) ;
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10.6 Actions and action blocks

Any expression that is intended to act on the state of the circuit (at circuit execution time) is called
an action and has type Action. The type Action is special, and cannot be redefined.

Primitive actions are provided as methods in interfaces to predefined objects (such as registers or
arrays). For example, the predefined interface for registers includes a ._write() method of type
Action:

interface Reg#(type a);
method Action _write (a x);
method a _read O;
endinterface: Reg

Section 9.4 describes special syntax for register reads and writes using non-blocking assignment so
that most of the time one never needs to mention these methods explicitly.

The programmer can create new actions only by building on these primitives, or by using Verilog
modules. Actions are combined by using action blocks:

exprPrimary = actionBlock

actionBlock = action [ : identifier |
{ actionStmt }
endaction [ : identifier ]

actionStmt m= regWrite

| varDo | varDeclDo
| functionCall

| system TaskStmt

| ( expression )

| actionBlock

| varDecl | varAssign
| functionDef

| moduleDef

| <action>BeginEndStmt

| <action>If | <action>Case

| <action>For | <action>While

The action block can be labelled with an identifier, and the endaction keyword can optionally be
labelled again with this identifier. Currently this is just for documentation purposes.

Example:
Action a;
a = (action
x <= x+1;
y <= z;

endaction);
The Standard Prelude package defines the trivial action that does nothing:
Action noAction;
which is equivalent to the expression:

action
endaction
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The Action type is actually a special case of the more general type ActionValue, described in the
next section:

typedef ActionValue#(void) Action;

10.7 Actionvalue blocks

Note: this is an advanced topic and can be skipped on first reading.

Actionvalue blocks express the concept of performing an action and simultaneously returning a value.
For example, the pop () method of a stack interface may both pop a value from a stack (the action)
and return what was at the top of the stack (the value). ActionValue is a predefined abstract type:

ActionValue#(a)

The type parameter a represents the type of the returned value. The type ActionValue is special,
and cannot be redefined.

Actionvalues are created using actionvalue blocks. The statements in the block contain the actions
to be performed, and a return statement specifies the value to be returned.

exprPrimary = actionValueBlock

action ValueBlock = actionvalue [ : identifier ]
{ actionValueStmt }
endactionvalue [ : identifier |

action ValueStmt n= regWrite
| varDo | varDeclDo
| functionCall
| systemTaskStmt
| ( expression )
| returnStmt
| varDecl | varAssign
| functionDef
| moduleDef
| <action Value> BeginEndStmt
| <actionValue>If | <actionValue> Case
| <actionValue>For | <actionValue> While

Given an actionvalue av, we use a special notation to perform the action and yield the value:
varDeclDo == type identifier <- expression ;
varDo == ddentifier <- expression ;

The first rule above declares the identifier, performs the actionvalue represented by the expression,
and assigns the returned value to the identifier. The second rule is similar and just assumes the
identifier has previously been declared.

Example. A stack:

interface IntStack;
method Action push (int x);
method ActionValue#(int) popQ);
endinterface: IntStack
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IntStack si;

IntStack s2;

action
int x <- sl.pop; -- A
s2.push (x+1); -- B
endaction

In line A, we perform a pop action on stack s1, and the returned value is bound to x. If we wanted
to discard the returned value, we could have omitted the “x <-” part. In line B, we perform a push
action on s2.

Note the difference between this statement:
x <- sl.pop;

and this statement:
z = sl.pop;

In the former, x must be of type int; the statement performs the pop action and x is bound to the
returned value. In the latter, z must be a method of type (ActionValue#(int)) and z is simply
bound to the method s1.pop. Later, we could say:

x <= Zz;

to perform the action and assign the returned value to x. Thus, the = notation simply assigns the
left-hand side to the right-hand side. The <- notation, which is only used with actionvalue right-hand
sides, performs the action and assigns the returned value to the left-hand side.

Example: Using an actionvalue block to define a pop in a FIFO.
import FIFO :: *;

// Interface FifoWithPop combines first with deq
interface FifoWithPop#(type t);

method Action enq(t data);

method Action clear;

method ActionValue#(t) pop;
endinterface

// Data is an alias of Bit#(8)
typedef Bit#(8) Data;

// The next function makes a deq and first from a fifo and returns an actionvalue block
function ActionValue#(t) fifoPop(FIFO#(t) f) provisos(Bits#(t, st));
return(
actionvalue
f.deq;
return f.first;
endactionvalue
);

endfunction
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// Module mkFifoWithPop
(* synthesize, always_ready = "clear" *)
module mkFifoWithPop(FifoWithPop#(Data));

// A fifo of depth 2
FIFO#(Data) fifo <- mkFIFO;

// methods

method enq = fifo.enq;

method clear = fifo.clear;

method pop = fifoPop(fifo);
endmodule

10.8 Function calls

Function calls are expressed in the usual notation, i.e., a function applied to its arguments, listed in
parentheses. If a function does not have any arguments, the parentheses are optional.

exprPrimary == functionCall

functionCall = exprPrimary [ ([ expression { , expression } ]) |
A function which has a result type of Action can be used as a statement when in the appropriate

context.

Note that the function position is specified as exprPrimary, of which identifier is just one special
case. This is because in BSV functions are first-class objects, and so the function position can be
an expression that evaluates to a function value. Function values and higher-order functions are
described in Section 9.8.3.

Example:

module mkFunctionCalls ();

function Bit#(4) everyOtherBit(Bit#(8) a);
let result = {al[7], al5], al3], alll};
return result;

endfunction

function Bool isEven(Bit#(8) b);
return (b[0] == 0);

endfunction
Reg#(Bit#(8)) a <- mkReg(0) ;
Reg#(Bit#(4)) b <- mkReg(0);

rule doSomething (isEven(a)); // calling "isEven" in predicate: fire if a is an even number
b <= everyOtherBit(a); // calling a function in the rule body
endrule
endmodule

10.9 Method calls

Method calls are expressed by selecting a method from an interface using dot notation, and then
applying it to arguments, if any, listed in parentheses. If the method does not have any arguments
the parentheses are optional.
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exprPrimary == methodCall
methodCall = exprPrimary . identifier [ ([ expression { , expression } ]) |

The exprPrimary is any expression that represents an interface, of which identifier is just one special
case. This is because in BSV interfaces are first-class objects. The identifier must be a method in
the supplied interface. Example:

// consider the following stack interface

interface StackIFC #(type data_t);

method Action push(data_t data); // an Action method with an argument
method ActionValue#(data_t) pop(); // an actionvalue method
method data_t first; // a value method

endinterface

// when instantiated in a top module

module mkTop Q) ;
StackIFC#(int) stack <- mkStack; // instantiating a stack module
Reg#(int) counter <- mkReg(0);// a counter register
Reg#(int) result <- mkReg(0);// a result register

rule pushdata;
stack.push(counter); // calling an Action method
endrule

rule popdata;
let x <- stack.pop; // calling an ActionValue method
result <= x;

endrule

rule readValue;
let temp_val = stack.first; // calling a value method
endrule

rule inc_counter;
counter <= counter +1;
endrule

endmodule

10.10 Static type assertions

We can assert that an expression must have a given type by using Verilog’s “type cast” notation:
exprPrimary m=  typeAssertion

typeAssertion == type ’ bitConcat
\ type > ( expression )

bitConcat = { expression { , expression } }

In most cases type assertions are used optionally just for documentation purposes. Type assertions
are necessary in a few places where the compiler cannot work out the type of the expression (an
example is a bit-selection with run-time indexes).
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In BSV although type assertions use Verilog’s type cast notation, they are never used to change an
expression’s type. They are used either to supply a type that the compiler is unable to determine by
itself, or for documentation (to make the type of an expression apparent to the reader of the source
code).

10.11 Struct and union expressions

Section 7.3 describes how to define struct and union types. Section 9.1 describes how to declare
variables of such types. Section 9.2 describes how to update variables of such types.

10.11.1 Struct expressions

To create a struct value, e.g., to assign it to a struct variable or to pass it an actual argument for a
struct formal argument, we use the following notation:

exprPrimary = structFErpr
structExpr == Identifier { memberBind { , memberBind } }
memberBind == ddentifier : expression

The leading Identifier is the type name to which the struct type was typedefed. Each memberBind
specifies a member name (identifier) and the value (expression) it should be bound to. The members
need not be listed in the same order as in the original typedef. If any member name is missing, that
member’s value is undefined.

Semantically, a structFExpr creates a struct value, which can then be bound to a variable, passed as
an argument, stored in a register, etc.

Example (using the processor example from Section 7.3):

typedef struct { Addr pc; RegFile rf; Memory mem; } Proc;
é%éc cpu;

cpu = Proc { pc : O, rf : ... };

In this example, the mem field is undefined since it is omitted from the struct expression.

10.11.2 Struct member selection

A member of a struct value can be selected with dot notation.
exprPrimary == exprPrimary . identifier

Example (using the processor example from Section 7.3):

cpu.pc

Since the same member name can occur in multiple types, the compiler uses type information to
resolve which member name you mean when you do a member selection. Occasionally, you may
need to add a type assertion to help the compiler resolve this.

Update of struct variables is described in Section 9.2.
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10.11.3 Tagged union expressions

To create a tagged union value, e.g., to assign it to a tagged union variable or to pass it an actual
argument for a tagged union formal argument, we use the following notation:

exprPrimary == taggedUnionExpr
taggedUnionExpr == tagged Identifier { memberBind { , memberBind } }
| tagged Identifier exprPrimary

memberBind == ddentifier : expression

The leading Identifier is a member name of a union type, i.e., it specifies which variant of the union
is being constructed.

The first form of taggedUnionFExpr can be used when the corresponding member type is a struct.
In this case, one directly lists the struct member bindings, enclosed in braces. Each memberBind
specifies a member name (identifier) and the value (ezpression) it should be bound to. The members
do not need to be listed in the same order as in the original struct definition. If any member name
is missing, that member’s value is undefined.

Otherwise, one can use the second form of taggedUnionExpr, which is the more general notation,
where exprPrimary is directly an expression of the required member type.

Semantically, a tagged UnionExpr creates a tagged union value, which can then be bound to a variable,
passed as an argument, stored in a register, etc.

Example (extending the previous one-hot example):
typedef union tagged { int Tagi; OneHot Tagoh; } U deriving (Bits);

U x; // these lines are (e.g.) in a module body.
x = tagged Tagi 23;

x = tagged Tagoh (encodeOneHot (23));
Example (extending the previous processor example):
typedef union tagged {
bit [4:0] Register;
bit [21:0] Literal;
struct {
bit [4:0] regAddr;
bit [4:0] regIndex;
} Indexed;
} InstrOperand;
InstrOperand orand;

orand = tagged Indexed { regAddr:3, regIndex:4 };

10.11.4 Tagged union member selection

A tagged union member can be selected with the usual dot notation. If the tagged union value does
not have the tag corresponding to the member selection, the value is undefined. Example:

InstrOperand orand;

. orand.Indexed.regAddr ...
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In this expression, if orand does not have the Indexed tag, the value is undefined. Otherwise, the
regAddr field of the contained struct is returned.

Selection of tagged union members is more often done with pattern matching, which is discussed in
Section 11.

Update of tagged union variables is described in Section 9.2.

10.12 Interface expressions

Note: this is an advanced topic that may be skipped on first reading.

Section 5.2 described top-level interface declarations. Section 5.5 described definition of the interface
offered by a module, by defining each of the methods in the interface, using methodDefs. That is
the most common way of defining interfaces, but it is actually just a convenient alternative notation
for the more general mechanism described in this section. In particular, method definitions in a
module are a convenient alternative notation for a return statement that returns an interface value
specified by an interface expression.

moduleStmt n= returnStmt
returnStmt = return expression ;
expression = --- see other productions - - -
| exprPrimary
exprPrimary = interfaceFBxpr
interface Expr ::= interface Identifier ;
{ interfaceStmt }
endinterface | : Identifier |
interfaceStmt = methodDef
| subinterfaceDef
| expressionStmt
expressionStmt = warDecl | varAssign
functionDef

<expression> BeginEndStmt
<expression>If | <expression>Case

|
| moduleDef
|
|
| <expression>For | <ezpression>While

An interface expression defines a value of an interface type. The Identifier must be an interface type
in an existing interface type definition.

Example. Defining the interface for a stack of depth one (using a register for storage):

module mkStack#(type a) (Stack#(a));
Reg# (Maybe#(a)) r;

Stack#(a) stklfc;
stkIfc = interface Stack;
method push (x) if (r matches tagged Invalid);
r <= tagged Valid x;
endmethod: push

method pop if (r matches tagged Valid .*);
r <= tagged Invalid;
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endmethod: pop

method top if (r matches tagged Valid .v);
return v;
endmethod: top
endinterface: Stack
return stkIfc;
endmodule: mkStack

The Maybe type is described in Section 7.3. Note that an interface expression looks similar to an
interface declaration (Section 5.2) except that it does not list type parameters and it contains method
definitions instead of method prototypes.

Interface values are first-class objects. For example, this makes it possible to write interface trans-
formers that convert one form of interface into another. Example:

interface FIFO#(type a); // define interface type FIFO
method Action enq (a x);
method Action deq;
method a first;

endinterface: FIFO

interface Get#(type a); // define interface type Get
method ActionValue#(a) get;
endinterface: Get

// Function to transform a FIFO interface into a Get interface

function Get#(a) fifoToGet (FIFO#(a) f);
return (interface Get
method get();
actionvalue
f.deq();
return f.first();
endactionvalue
endmethod: get
endinterface) ;
endfunction: fifoToGet

10.12.1 Differences between interfaces and structs

Interfaces are similar to structs in the sense that both contain a set of named items—members in
structs, methods in interfaces. Both are first-class values—structs are created with struct expressions,
and interfaces are created with interface expressions. A named item is selected from both using the
same notation—struct.member or interface.method.

However, they are different in the following ways:

e Structs cannot contain methods; interfaces can contain nothing but methods (and subinter-
faces).

e Struct members can be updated; interface methods cannot.

e Struct members can be selected; interface methods cannot be selected, they can only be invoked
(inside rules or other interface methods).

e Structs can be used in pattern matching; interfaces cannot.
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10.13 Rule expressions

Note: This is an advanced topic that may be skipped on first reading.

Section 5.6 described definition of rules in a module. That is the most common way to define rules,
but it is actually just a convenient alternative notation for the more general mechanism described
in this section. In particular, rule definitions in a module are a convenient alternative notation for
a call to the built-in addRules () function passing it an argument value of type Rules. Such a value
is in general created using a rule expression. A rule expression has type Rules and consists of a
collection of individual rule constructs.

exprPrimary w= rulesExpr
rulesExpr m= [ attributeInstances |
rules [ : identifier |
rulesStmt
endrules [ : identifier ]
rulesStmt = rule | expressionStmt
expressionStmt = warDecl | varAssign
functionDef
moduleDef

<expression>If | <expression>Case

| <expression> BeginEndStmt
| <expression>For | <expression>While

A rule expression is optionally preceded by an attributeInstances; these are described in Section 14.3.
A rule expression is a block, bracketed by rules and endrules keywords, and optionally labelled
with an identifier. Currently the identifier is used only for documentation. The individual rule
construct is described in Section 5.6.

Example. Executing a processor instruction:

rules
Word instr = meml[pc];

rule instrExec;
case (instr) matches
tagged Add { .r1, .r2, .r3 }: begin

pc <= pc+l;
rfr1] <= rfl[r2] + rflr3];
end;
tagged Jz {.r1, .r2} 1 if (r1 == 0)
begin
pc <= r2;
end;
endcase
endrule
endrules

Example. Defining a counter:

// IfcCounter with read method
interface IfcCounter#(type t);
method t readCounter;

endinterface
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// Definition of CounterType
typedef Bit#(16) CounterType;

// The next function returns the rule addOne
function Rules incReg(Reg#(CounterType) a);
return( rules
rule addOne;
a<=a+1;
endrule
endrules);
endfunction

// Module counter using IfcCounter interface
(* synthesize,
reset_prefix = "reset_b",
clock_prefix = "counter_clk",
always_ready, always_enabled *)
module counter (IfcCounter#(CounterType));

// Reg counter gets reset to 1 asynchronously with the RST signal
Reg#(CounterType)  counter <- mkRegA(1);

// Add incReg rule to increment the counter

addRules (incReg(asReg(counter))) ;

// Next rule resets the counter to 1 when it reaches its limit

rule resetCounter (counter == ’1);
action
counter <= 0;
endaction
endrule

// Output the counters value

method CounterType readCounter;
return counter;

endmethod

endmodule

11 Pattern matching

Pattern matching provides a visual and succinct notation to compare a value against structs, tagged
unions and constants, and to access members of structs and tagged unions. Pattern matching can be
used in case statements, case expressions, if statements, conditional expressions, rule conditions,

and method conditions.

pattern == . identifier
o
\ constantPattern
\ taggedUnionPattern
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| structPattern Struct
| tuplePattern Tuple

constantPattern = intLiteral
| realLiteral
| stringLiteral
| Identifier Enum label

taggedUnionPattern = tagged Identifier [ pattern |
structPattern = Identifier { identifier : pattern { , identifier : pattern } }
tuplePattern = { pattern { , pattern }}

A pattern is a nesting of tagged union and struct patterns with the leaves consisting of pattern
variables, constant expressions, and the wildcard pattern . *.

In a pattern .z, the variable x is declared at that point as a pattern variable, and is bound to the
corresponding component of the value being matched.

A constant pattern is an integer literal, or an enumeration label (such as True or False). Integer
literals can include the wildcard character ? (example: 4’b00?77).

A tagged union pattern consists of the tagged keyword followed by an identifier which is a union
member name. If that union member is not a void member, it must be followed by a pattern for
that member.

A struct pattern consists of an identifier followed by braces, where the identifier is the type name of
the struct as given in its typedef declaration. Within the braces are listed, recursively, the member
name and a pattern for each member of the struct. The members can be listed in any order, and
members can be omitted.

A tuple pattern is enclosed in braces and lists, recursively, a pattern for each member of the tuple
(tuples are described in Section 13.4).

A pattern always occurs in a context of known type because it is matched against an expression of
known type. Recursively, its nested patterns also have known type. Thus a pattern can always be
statically type-checked.

Each pattern introduces a new scope; the extent of this scope is described separately for each of
the contexts in which pattern matching may be used. Each pattern variable is implicitly declared
as a new variable within the pattern’s scope. Its type is uniquely determined by its position in the
pattern. Pattern variables must be unique in the pattern, i.e., the same pattern variable cannot be
used in more than one position in a single pattern.

In pattern matching, the value V of an expression is matched against a pattern. Note that static
type checking ensures that V' and the pattern have the same type. The result of a pattern match is:

e A boolean value, True, if the pattern match succeeds, or False, if the pattern match fails.

e If the match succeeds, the pattern variables are bound to the corresponding members from V',
using ordinary assignment.

Each pattern is matched using the following simple recursive rule:

e A pattern variable always succeeds (matches any value), and the variable is bound to that
value (using ordinary procedural assignment).

e The wildcard pattern .* always succeeds.
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e A constant pattern succeeds if V' is equal to the value of the constant. Literals, including
integer literals, string literals, and real literals, can include the wildcard character 7. A literal
containing a wildcard will match any constant obtained by replacing each wildcard character
by a valid digit. For example, *h1274 will match any constant between *h1204 and ’h12f4
inclusive.

e A tagged union pattern succeeds if the value has the same tag and, recursively, if the nested
pattern matches the member value of the tagged union.

e A struct or tuple pattern succeeds if, recursively, each of the nested member patterns matches
the corresponding member values in V. In struct patterns with named members, the textual
order of members does not matter, and members may be omitted. Omitted members are
ignored.

Conceptually, if the value V' is seen as a flattened vector of bits, the pattern specifies the following:
which bits to match, what values they should be matched with and, if the match is successful, which
bits to extract and bind to the pattern identifiers.

11.1 Case statements with pattern matching

Case statements can occur in various contexts, such as in modules, function bodies, action and
actionValue blocks, and so on. Ordinary case statements are described in Section 9.6. Here we
describe pattern-matching case statements.

<ctxt>Case = case ( expression ) matches
{ <ctzt>CasePatltem }
[ <ctzt>Defaultltem |
endcase
<ctzt>CasePatltem = pattern { &&& expression } : <ctat>Stmt
<ctxt>Defaultltem = default [ : | <ctzt>Stmt

The keyword matches after the main expression (following the case keyword) signals that this is a
pattern-matching case statement instead of an ordinary case statement.

Each case item contains a left-hand side and a right-hand side, separated by a colon. The left-hand
side contains a pattern and an optional filter (&&& followed by a boolean expression). The right-hand
side is a statement. The pattern variables in a pattern may be used in the corresponding filter and
right-hand side. The case items may optionally be followed, finally, by a default item (the colon
after the default keyword is optional).

The value of the main expression (following the case keyword) is matched against each case item, in
the order given, until an item is selected. A case item is selected if and only if the value matches the
pattern and the filter (if present) evaluates to True. Note that there is a left-to-right sequentiality
in each item— the filter is evaluated only if the pattern match succeeds. This is because the filter
expression may use pattern variables that are meaningful only if the pattern match succeeds. If none
of the case items matches, and a default item is present, then the default item is selected.

If a case item (or the default item) is selected, the right-hand side statement is executed. Note that
the right-hand side statement may use pattern variables bound on the left hand side. If none of the
case items succeed, and there is no default item, no statement is executed.

Example (uses the Maybe type definition of Section 7.3):
case (f(a)) matches
tagged Valid .x : return x;

tagged Invalid : return O;
endcase
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First, the expression f (a) is evaluated. In the first arm, the value is checked to see if it has the form
tagged Valid .x, in which case the pattern variable x is assigned the component value. If so, then
the case arm succeeds and we execute return x. Otherwise, we fall through to the second case arm,
which must match since it is the only other possibility, and we return 0.

Example:

typedef union tagged {
bit [4:0] Register;
bit [21:0] Literal;
struct {
bit [4:0] regAddr;
bit [4:0] reglndex;
} Indexed;
} InstrOperand;

InstrOperand orand;

case (orand) matches

tagged Register .r x =rf [r];
tagged Literal .n t X =1
tagged Indexed {regAddr: .ra, regIndex: .ri} : x = mem[ra+ri];
endcase
Example:

Reg#(Bit#(16)) rg <- mkRegU;
rule r;
case (rg) matches
’b_0000_0007_0000_0000: $display("1");
’0_07_00: $display("2");
’h_7_0: $display("3");
default: $display("D");
endcase
endrule

11.2 Case expressions with pattern matching

caseFxpr = case ( expression ) matches
{ caseEzxprltem }
endcase
caseExpritem = pattern | &&& expression | : expression
| default [ : | expression

Case expressions with pattern matching are similar to case statements with pattern matching. In
fact, the process of selecting a case item is identical, i.e., the main expression is evaluated and
matched against each case item in sequence until one is selected. Case expressions can occur in
any expression context, and the right-hand side of each case item is an expression. The whole case
expression returns a value, which is the value of the right-hand side expression of the selected item.
It is an error if no case item is selected and there is no default item.

In contrast, case statements can only occur in statement contexts, and the right-hand side of each
case arm is a statement that is executed for side effect. The difference between case statements and
case expressions is analogous to the difference between if statements and conditional expressions.
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Example. Rules and rule composition for Pipeline FIFO using case statements with pattern match-
ing.

package PipelineFIFO;
import FIFO::*;

module mkPipelineFIFQ (FIFO#(a))
provisos (Bits#(a, sa));

// STATE ——————————————

Reg# (Maybe#(a))  taggedReg <- mkReg (tagged Invalid); // the FIFO
RWire#(a) rw_enq <- mkRWire; // enq method signal
RWire#(Bit#(0)) rw_deq <- mkRWire; // deq method signal

// RULES and RULE COMPOSITION -----------—--—-

Maybe#(a) taggedReg_post_deq = case (rw_deq.wget) matches
tagged Invalid : return taggedReg;
tagged Valid .x : return tagged Invalid;
endcase;

Maybe#(a) taggedReg_post_enq = case (rw_enq.wget) matches
tagged Invalid : return taggedReg_post_deq;
tagged Valid .v : return tagged Valid v;

endcase;
rule update_final (isValid(rw_enq.wget) || isValid(rw_deq.wget));
taggedReg <= taggedReg_post_enq;

endrule

11.3 Pattern matching in if statements and other contexts

If statements are described in Section 9.6. As the grammar shows, the predicate (condPredicate)
can be a series of pattern matches and expressions, separated by &&&. Example:

if ( e; matches p; &&&% e2 &&&% es matches p3 )
stmtl

else
stmt2

Here, the value of e; is matched against the pattern pq; if it succeeds, the expression es is evaluated;
if it is true, the value of e3 is matched against the pattern ps; if it succeeds, stmtl is executed,
otherwise stmt2 is executed. The sequential order is important, because es and es may use pattern
variables bound in p;, and stmt! may use pattern variables bound in p; and p3, and pattern variables
are only meaningful if the pattern matches. Of course, stmt2 cannot use any of the pattern variables,
because none of them may be meaningful when it is executed.

In general the condPredicate can be a series of terms, where each term is either a pattern match
or a filter expression (they do not have to alternate). These are executed sequentially from left to
right, and the condPredicate succeeds only if all of them do. In each pattern match e matches p, the
value of the expression e is matched against the pattern p and, if successful, the pattern variables are
bound appropriately and are available for the remaining terms. Filter expressions must be boolean
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expressions, and succeed if they evaluate to True. If the whole condPredicate succeeds, the bound
pattern variables are available in the corresponding “consequent” arm of the construct.

The following contexts also permit a condPredicate cp with pattern matching:

e Conditional expressions (Section 10.2):
cp ? eyt ez

The pattern variables from cp are available in e; but not in e3.

e Conditions of rules (Sections 5.6 and 10.13):

rule r (cp);
. rule body ...
endrule

The pattern variables from cp are available in the rule body.

e Conditions of methods (Sections 5.5 and 10.12):

method ¢t f (...) if (¢p);
. method body ...
endmethod

The pattern variables from cp are available in the method body.
Example. Continuing the Pipeline FIFO example from the previous section (11.2).

// INTERFACE ----------—-----

method Action enq(v) if (taggedReg_post_deq matches tagged Invalid);
rw_enq.wset(v);
endmethod

method Action deq() if (taggedReg matches tagged Valid .v);
rw_deq.wset(?);

endmethod

method first() if (taggedReg matches tagged Valid .v);
return v;

endmethod

method Action clear();
taggedReg <= tagged Invalid;

endmethod

endmodule: mkPipelineFIFO

endpackage: PipelineFIFO

11.4 Pattern matching assignment statements

Pattern matching can be used in variable assignments for convenient access to the components of a
tuple or struct value.

varAssign 1= match patlern = expression ;

99



Reference Guide BSV

The pattern variables in the left-hand side pattern are declared at this point and their scope extends
to subsequent statements in the same statement sequence. The types of the pattern variables are
determined by their position in the pattern.

The left-hand side pattern is matched against the value of the right-hand side expression. On a
successful match, the pattern variables are assigned the corresponding components in the value.

Example:

Reg#(Bit#(32)) a <- mkReg(0);
Tuple2#(Bit#(32), Bool) data;

rule ri;
match {.in, .start} = data;
//using "in" as a local variable
a <= in;

endrule

12 Finite state machines

BSV contains a powerful and convenient notation for expressing finite state machines (FSMs). FSMs
are essentially well-structured processes involving sequencing, parallelism, conditions and loops, with
a precise compositional model of time.

The FSM sublanguage in BSV does not add any fundamental new power or semantics to the language.
The analogy is “structured programming” (while-loops, for-loops, and if-then-else constructs) vs. goto
statements (arbitrary jumps) in conventional programming languages. Structured programming
more clearly and succinctly expresses certain common control structures (and therefore are also
easier to modify and maintain) than unconstrained gotos. Similarly, BSV’s FSM sublanguage more
clearly and succinctly expresses certain common sequential and concurrent process structures that
could, in principle, have all been coded directly with rules.

In fact, the BSV compiler translates all the constructs described here internally into rules. In
particular, the primitive statements in these FSMs are standard actions (Section 10.6), obeying all
the scheduling semantics of actions (Section 6.2).

FSMs are particularly useful in testbenches, where one orchestrates sequential, parallel and concur-
rent stimulus generation for a DUT (Design Under Test).

In order to use this sublanguage, it is necessary to import the StmtFSM package:
import StmtFSM :: * ;

First, one uses the Stmt sublanguage to compose the actions of an FSM using sequential, parallel,
conditional and looping structures. This sublanguage is within the expression syntactic category,
i.e., a term in the sublanguage is an expression whose value is of type Stmt. This first-class value can
be bound to identifiers, passed as arguments and results of functions, held in static data structures,
etc., like any other value. Finally, the FSM can be instantiated into hardware, multiple times if
desired, by passing the Stmt value to the module constructor mkFSM. The resulting module interface
has type FSM, which has methods to start the FSM and to wait until it completes.

12.1 The Stmt sublanguage

The state machine is automatically constructed from the procedural description given in the Stmt
definition. Appropriate state counters are created and rules are generated internally, corresponding
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to the transition logic of the state machine. The use of rules for the intermediate state machine
generation ensures that resource conflicts are identified and resolved, and that implicit conditions
are properly checked before the execution of any action.

The names of generated rules (which may appear in conflict warnings) have suffixes of the form
“l<nn>c<nn>”, where the <nn> are line or column numbers, referring to the statement which gave
rise to the rule.

A term in the Stmt sublanguage is an expression, introduced at the outermost level by the keywords
seq or par. Note that within the sublanguage, if, while and for statements are interpreted
as statements in the sublanguage and not as ordinary statements, except when enclosed within
action/endaction keywords.

exprPrimary = seqFsmStmt | parFsmStmt

fsmStmt w= exprFsmStmt
| seqF'smStmit

| parFsmStmt

| ifF'smStmt

| whileFsmStmt

| repeatFsmStmt
| forFsmStmt

| returnFsmStmt

exprFsmStmt w= regWrite ;
| expression ;

seqFsmStmit = seq fsmStmt { fsmStmt } endseq
parFsmStmt = par fsmStmt { fsmStmt } endpar

ifFsmStmt w= 1if expression fsmStmt
[ else fsmStmt |

whileFsmStmt ::= while ( expression )
loopBodyFsmStmt

forFsmStmit == for ( fsmStmt ; expression ; fsmStmt )
loopBodyFsmStmt

returnFsmStmt 1= return ;

repeatFsmStmt = repeat ( expression )
loopBodyFsmStmt

loopBodyFsmStmt n= fsmStmt
| break ;
| continue ;

The simplest kind of statement is an exprFsmStmt, which can be a register assignment or, more
generally, any expression of type Action (including action method calls and action-endaction
blocks or of type Stmt. Statements of type Action execute within exactly one clock cycle, but of
course the scheduling semantics may affect exactly which clock cycle it executes in. For example, if
the actions in a statement interfere with actions in some other rule, the statement may be delayed
by the schedule until there is no interference. In all the descriptions of statements below, the
descriptions of time taken by a construct are minimum times; they could take longer because of
scheduling semantics.

Statements can be composed into sequential, parallel, conditional and loop forms. In the sequential
form (seg-endseq), the contained statements are executed one after the other. The seq block
terminates when its last contained statement terminates, and the total time (number of clocks) is
equal to the sum of the individual statement times.
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In the parallel form (par-endpar), the contained statements (“threads” or “processes”) are all ex-
ecuted in parallel. Statements in each thread may or may not be executed simultaneously with
statements in other threads, depending on scheduling conflicts; if they cannot be executed simul-
taneously they will be interleaved, in accordance with normal scheduling. The entire par block
terminates when the last of its contained threads terminates, and the minimum total time (number
of clocks) is equal to the maximum of the individual thread times.

In the conditional form (if (b) s; else s2), the boolean expression b is first evaluated. If true,
s1 is executed, otherwise so (if present) is executed. The total time taken is ¢ cycles, if the chosen
branch takes t cycles.

In the while (b) s loop form, the boolean expression b is first evaluated. If true, s is executed, and
the loop is repeated. Each time the condition evaluates true , the loop body is executed, so the total
time is n x t cycles, where n is the number of times the loop is executed (possibly zero) and ¢ is the
time for the loop body statement.

The for (s1;b;s2) sp loop form is equivalent to:
s1; while (b) seq sp; S2 endseq

i.e., the initializer s; is executed first. Then, the condition b is executed and, if true, the loop body
sp is executed followed by the “increment” statement so. The b, sg, so sequence is repeated as long
as b evaluates true.

Similarly, the repeat (n) sp loop form is equivalent to:
while (repeat_count < n) seq sp; repeat_count <= repeat_count + 1 endseq

where the value of repeat_count is initialized to 0. During execution, the condition (repeat_count <
n) is executed and, if true, the loop body sp is executed followed by the “increment” statement
repeat_count <= repeat_count + 1. The sequence is repeated as long as repeat_count < n evaluates
true.

In all the loop forms, the loop body statements can contain the keywords continue or break, with
the usual semantics, i.e., continue immediately jumps to the start of the next iteration, whereas
break jumps out of the loop to the loop sequel.

It is important to note that this use of loops, within a Stmt context, expresses time-based (temporal)
behavior.

12.2 FSM Interfaces and Methods

Two interfaces are defined with this package, FSM and Once. The FSM interface defines a basic state
machine interface while the Once interface encapsulates the notion of an action that should only be
performed once. A Stmt value can be instatiated into a module that presents an interface of type
FSM.

There is a one clock cycle delay after the start method is asserted before the FSM starts. This
insulates the start method from many of the FSM schedule constraints that change depending on
what computation is included in each specific FSM. Therefore, it is possible that the StmtFSM is
enabled when the start method is called, but not on the next cycle when the FSM actually starts.
In this case, the FSM will stall until the conditions allow it to continue.

Interfaces
Name \ Description
FSM The state machine interface
Once Used when an action should only be performed once
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e FSM Interface

The FSM interface provides four methods; start, waitTillDone, done and abort. Once in-
stantiated, the FSM can be started by calling the start method. One can wait for the FSM
to stop running by waiting explicitly on the boolean value returned by the done method. The
done method is True before the FSM has run the first time. Alternatively, one can use the
waitTillDone method in any action context (including from within another FSM), which (be-
cause of an implicit condition) cannot execute until this FSM is done. The user must not use

waitTillDone until after the FSM has been started because the FSM comes out of a reset as

done. The abort method immediately exits the execution of the FSM.

interface FSM;

method Action start();
method Action waitTillDone();

method Bool

done();

method Action abort();

endinterface: FSM

FSM Interface
Methods

Name Type Description

start Action Begins state machine execution. This can only be called
when the state machine is not executing.

waitTillDone Action Does not do any action, but is only ready when the state
machine is done.

done Bool Asserted when the state machine is done and is ready to
rerun. State machine comes out of reset as done.

abort Action Exits execution of the state machine.

e Once Interface

The Once interface encapsulates the notion of an action that should only be performed once.
The start method performs the action that has been encapuslated in the Once module. After
start has been called start cannot be called again (an implicit condition will enforce this).
If the clear method is called, the start method can be called once again.

interface Once;

method Action start();
method Action clear();

method Bool

done()

endinterface: Once

>

Once Interface
Methods
Name Type \ Description
start Action Performs the action that has been encapsulated in the
Once module, but once start has been called it cannot
be called again (an implicit condition will enforce this).
clear Action If the clear method is called, the start method can be
called once again.
done Bool Asserted when the state machine is done and is ready to
rerun.

103




Reference Guide BSV

12.3 FSM Modules

Instantiation is performed by passing a Stmt value into the module constructor mkFSM. The state
machine is automatically constructed from the procedural decription given in the definition described
by state machine of type Stmt named seq_stmt. During construction, one or more registers of
appropriate widths are created to track state execution. Upon start action, the registers are loaded
and subsequent state changes then decrement the registers.

module mkFSM#( Stmt seq_stmt ) ( FSM );

The mkFSMWithPred module is like mkFSM above, except that the module constructor takes an ad-
ditional boolean argument (the predicate). The predicate condition is added to the condition of
each rule generated to create the FSM. This capability is useful when using the FSM in conjuction
with other rules and/or FSMs. It allows the designer to explicitly specify to the compiler the condi-
tions under which the FSM will run. This can be used to eliminate spurious rule conflict warnings
(between rules in the FSM and other rules in the design).

module mkFSMWithPred#( Stmt seq_stmt, Bool pred ) ( FSM );

The mkAutoFSM module is also like mkFSM above, except the state machine runs automatically im-
mediately after reset and a $finish(0) is called upon completion. This is useful for test benches.

Thus, it has no interface, that is, it has an empty interface.

module mkAutoFSM#( seq_stmt ) ();

The mkOnce function is used to create a Once interface where the action argument has been encap-
sulated and will be performed when start is called.

module mkOnce#( Action a ) ( Once );

The implementation for Once is a 1 bit state machine (with a state register named onceReady)

allowing the action argument to occur only one time.

The ready bit is initially True and then

cleared when the action is performed. It might not be performed right away, because of implicit
conditions or scheduling conflicts.

Name

BSV Module Declaration

Description

mkFSM

module

mkFSM# (Stmt seq_stmt) (FSM) ;

Instantiate a Stmt value into a mod-
ule that presents an interface of type
FSM.

mkFSMWithPred

module

mkFSMWithPred#(Stmt seq_stmt,
Bool pred) (FSM) ;

Like mkFSM, except that the module
constructor takes an additional pred-
icate condition as an argument. The
predicate condition is added to the
condition of each rule generated to
create the FSM.

mkAutoFSM

module

mkAutoFSM#(Stmt seq_stmt) ) ;

Like mkFSM, except that state ma-
chine simulation is automatically
started and a $£inish(0)) is called
upon completion.

mkOnce

module

mkOnce#( Action a ) ( Once );

Used to create a Once interface where
the action argument has been encap-
sulated and will be performed when
start is called.
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12.4 FSM Functions

There are two functions, await and delay, provided by the StmtFSM package.

The await function is used to create an action which can only execute when the condition is True.
The action does not do anything. await is useful to block the execution of an action until a condition
becomes True.

The delay function is used to execute noAction for a specified number of cycles. The function is
provided the value of the delay and returns a Stmt.

Name Function Declaration Description

await Creates an Action which does nothing,
but can only execute when the condi-
tion is True.

delay Creates a Stmt which executes
noAction for value number of cycles.
a_type must be in the Arith class and
Bits class and < 32 bits.

function Action await( Bool cond ) ;

function Stmt delay( a_type value ) ;

Example - Initializing a single-ported SRAM.

Since the SRAM has only a single port, we can write to only one location in each clock. Hence, we
need to express a temporal sequence of writes for all the locations to be initialized.

Reg#(int) i <- mkRegU; // instantiate register with interface i
Reg#(int) j <- mkRegU; // instantiate register with interface j

// Define fsm behavior
Stmt s = seq
for (i <= 0; i < M; i<=1i+ 1)
for (j <= 0; j<N; j<=3j+ 1
sram.write (i, j, i+j);
endseq;

FSM fsm(); // instantiate FSM interface
mkFSM#(s) (fsm); // create fsm with interface fsm and behavior s

rule initSRAM (start_reset);
fsm.start; // Start the fsm
endrule

When the start_reset signal is true, the rule kicks off the SRAM initialization. Other rules can
wait on fsm.done, if necessary, for the SRAM initialization to be completed.

In this example, the seg-endseq brackets are used to enter the Stmt sublanguage, and then for
represents Stmt sequencing (instead of its usual role of static generation). Since seq-endseq contains
only one statement (the loop nest), par-endpar brackets would have worked just as well.

Example - Defining and instantiating a state machine.

import StmtFSM :: x*;
import FIFO SR T
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module testSizedFIFO(Q);

// Instantiation of DUT
FIFO#(Bit#(16)) dut <- mkSizedFIF0(5);

// Instantiation of reg’s i and j
Regt (Bit#(4)) i <- mkRegA(0);
Reg# (Bit#(4)) j <- mkRegA(0);

// Action description with stmt notation
Stmt driversMonitors =
(seq
// Clear the fifo
dut.clear;

// Two sequential blocks running in parallel
par
// Enque 2 times the Fifo Depth
for(i <= 1; i <= 10; i <=1 + 1)
seq
dut.enq({0,i});
$display(" Enque %d", i);
endseq

// Wait until the fifo is full and then deque
seq
while (1 < 5)
seq
nolAction;
endseq
while (i <= 10)
action
dut.deq;
$display("Value read %d", dut.first);
endaction
endseq

endpar

$finish(0);
endseq) ;

// stmt instantiation
FSM test <- mkFSM(driversMonitors);

// A register to control the start rule
Reg#(Bool) going <- mkReg(False);

// This rule kicks off the test FSM, which then runs to completion.
rule start (!going);

going <= True;

test.start;
endrule
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endmodule

Example - Defining and instantiating a state machine to control speed changes

import StmtFSM: :x*;
import Common: :*;

interface SC_FSM_ifc;
method Speed xcvrspeed;
method Bool devices_ready;
method Bool out_of_reset;
endinterface

module mkSpeedChangeFSM(Speed new_speed, SC_FSM_ifc ifc);
Speed initial_speed = FS;

Reg#(Bool) outofReset_reg <- mkReg(False);
Reg#(Bool) devices_ready_reg <- mkReg(False);
Reg# (Speed) device_xcvr_speed_reg <- mkReg(initial_speed);

// the following lines define the FSM using the Stmt sublanguage
// the state machine is of type Stmt, with the name speed_change_stmt
Stmt speed_change_stmt =
(seq
action outofReset_reg <= False; devices_ready_reg <= False; endaction
noAction; noAction; // same as: delay(2);

device_xcvr_speed_reg <= new_speed;
noAction; noAction; // same as: delay(2);

outofReset_reg <= True;
if (device_xcvr_speed_reg==HS)
seq noAction; noAction; endseq
// or seq delay(2); endseq
else
seq noAction; noAction; noAction; noAction; noAction; noAction; endseq
// or seq delay(6); endseq
devices_ready_reg <= True;
endseq) ;
// end of the state machine definition

// the statemachine is instantiated using mkFSM
FSM speed_change_fsm <- mkFSM(speed_change_stmt);

// the rule change_speed starts the state machine
// the rule checks that previous actions of the state machine have completed
rule change_speed ((device_xcvr_speed_reg != new_speed || !outofReset_reg) &&
speed_change_fsm.done) ;
speed_change_fsm.start;
endrule

method xcvrspeed = device_xcvr_speed_reg;

method devices_ready = devices_ready_reg;

method out_of_reset = outofReset_reg;
endmodule
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Example - Defining a state machine and using the await function

// This statement defines this brick’s desired behavior as a state machine:
// the subcomponents are to be executed one after the other:
Stmt brickAprog =
seq
// Since the following loop will be executed over many clock
// cycles, its control variable must be kept in a register:
for (i <= 0; i < 0-1; i <= i+1)
// This sequence requests a RAM read, changing the state;
// then it receives the response and resets the state.
seq
action
// This action can only occur if the state is Idle
// the await function will not let the statements
// execute until the condition is met
await (ramState==Idle) ;
ramState <= DesignReading;
ram.request.put(tagged Read i);
endaction
action
let rs <- ram.response.get();
ramState <= Idle;
obufin.put (truncate(rs));
endaction
endseq
// Wait a little while:
for (i <= 0; i < 200; i <= i+l1)
action
endaction
// Set an interrupt:
action
inrpt.set;
endaction
endseq
);

// end of the state machine definition
FSM brickAfsm <- mkFSM#(brickAprog); //instantiate the state machine

// A register to remember whether the FSM has been started:
Reg# (Bool) notStarted();
mkReg# (True) the_notStarted(notStarted);

// The rule which starts the FSM, provided it hasn’t been started
// previously and the brick is enabled:
rule start_Afsm (notStarted && enabled);

brickAfsm.start; //start the state machine
notStarted <= False;
endrule
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12.5 Creating FSM Server Modules

Instantiation of an FSM server module is performed in a manner analogous to that of a standard FSM
module constructor (such as mkFSM). Whereas mkFSM takes a Stmt value as an argument, howver,
mkFSMServer takes a function as an argument. More specifically, the argument to mkFSMServer is a
function which takes an argument of type a and returns a value of type RStmt# (b).

module mkFSMServer#(function RStmt#(b) seq_func (a input)) ( FSMServer#(a, b) );

The RStmt type is a polymorphic generalization of the Stmt type. A sequence of type RStmt#(a)
allows valued return statements (where the return value is of type a). Note that the Stmt type is
equivalent to RStmt# (Bit#(0)).

typedef RStmt#(Bit#(0)) Stmt;
The mkFSMServer module constructor provides an interface of type FSMServer#(a, b).

interface FSMServer#(type a, type b);
interface Server#(a, b) server;
method Action abort();

endinterface

The FSMServer interface has one subinterface of type Server#(a, b) (from the ClientServer
package) as well as an Action method called abort; The abort method allows the FSM inside the
FSMServer module to be halted if the client FSM is halted.

An FSMServer module is accessed using the callServer function from within an FSM statement
block. callServer takes two arguments. The first is the interface of the FSMServer module. The
second is the input value being passed to the module.

result <- callServer(serv_ifc, value);

Note the special left arrow notation that is used to pass the server result to a register (or more
generally to any state element with a Reg interface). A simple example follows showing the definition
and use of a mkFSMServer module.

Example - Defining and instantiating an FSM Server Module

// State elements to provide inputs and store results
Reg#(Bit#(8)) count <- mkReg(0);
Reg#(Bit#(16)) partial <- mkReg(0);
Reg#(Bit#(16)) result <- mkReg(0);

// A function which creates a server sequence to scale a Bit#(8)
// input value by and integer scale factor. The scaling is accomplished
// by a sequence of adds.
function RStmt#(Bit#(16)) scaleSeq (Integer scale, Bit#(8) wvalue);
seq
partial <= 0;
repeat (fromInteger(scale))
action
partial <= partial + {0,value};
endaction
return partial;
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endseq;
endfunction

// Instantiate a server module to scale the input value by 3
FSMServer# (Bit#(8), Bit#(16)) scale3_serv <- mkFSMServer(scaleSeq(3));

// A test sequence to apply the server
let test_seq = seq
result <- callServer(scale3_serv, count);
count <= count + 1;
endseq;

let test_fsm <- mkFSM(test_seq);
// A rule to start test_fsm

rule start;
test_fsm.start;

endrule

// finish after 6 input values

rule done (count == 6);
$finish;

endrule

12.6 FSM performance caveat

We mentioned, earlier, that FSMs do not add any fundamental new power or semantics to the lan-
guage. Anything expressed using StmtFSM can also be written directly using rules; such a rendering
is usually more verbose and its logical process structure is usually less transparent. However, writing
explicit rules does enable the programmer to perform certain optimizations that would not happen
in StmtFSM compilation. For example, in a StmtFSM for-loop with an incrementing index register,
can the Action for the index-register increment be merged into any of the Actions in the for-loop
body (potential conflicts)? The human programmer can often answer this question easily, whereas
StmtFSM compiler takes a pessimistic extra cycle after the loop body for this action.

13 Important primitives

These primitives are available via the Standard Prelude package and other standard libraries. See
also Libraries Reference Guide more useful libraries.

13.1 The types bit and Bit

The type bit [m:0] and its synonym Bit#(Mplus1) represents bit-vectors of width m + 1, provided
the type Mplus1 has been suitably defined. The lower (Isb) index must be zero. Example:

bit [15:0] =zero;
zero = 0

typedef bit [50:0] BurroughsWord;

Syntax for bit concatenation and selection is described in Section 10.4.

There is also a useful function, split, to split a bit-vector into two subvectors:
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function Tuple2#(Bit#(m), Bit#(n)) split (Bit#(mn) xy)
provisos (Add#(m,n,mn));

It takes a bit-vector of size mn and returns a 2-tuple (a pair, see Section 13.4) of bit-vectors of size
m and n, respectively. The proviso expresses the size constraints using the built-in Add type class.

The function split is polymorphic, i.e, m and n may be different in different applications of the func-
tion, but each use is fully type-checked statically, i.e., the compiler verifies the proviso, performing
any calculations necessary to do so.

13.1.1 Bit-width compatibility

BSV is currently very strict about bit-width compatibility compared to Verilog and System Verilog,
in order to reduce the possibility of unintentional errors. In BSV, the types bit [m:0] and bit[n:0]
are compatible only if m = n. For example, an attempt to assign from one type to the other, when
m#n, will be reported by the compiler as a type-checking error—there is no automatic padding or
truncation. The Standard Prelude package (see Libraries Reference Guide) contains functions such
as extend() and truncate(), which may be used explicitly to extend or truncate to a required
bit-width. These functions, being overloaded over all bit widths, are convenient to use, i.e., you do
not have to constantly calculate the amount by which to extend or truncate; the type checker will
do it for you.

13.2 Ulnt, Int, int and Integer

The types UInt#(n) and Int#(n), respectively, represent unsigned and signed integer data types
of width n bits. These types have all the operations from the type classes (overloading groups)
Bits, Literal, Eq, Arith, Ord, Bounded, Bitwise, BitReduction, and BitExtend. See Libraries
Reference Guide for the specifications of these type classes and their associated operations.

Note that the types UInt and Int are not really primitive; they are defined completely in BSV.
The type int is just a synonym for Int#(32).

The type Integer represents unbounded integers. Because they are unbounded, they are only used
to represent static values used during static elaboration. The overloaded function fromInteger
allows conversion from an Integer to various other types.

13.3 String and Char

The type String is defined in the Standard Prelude package (see Libraries Reference Guide) along
with the type Char. Strings and chars are mostly used in system tasks (such as $display). Strings
can be concatenated using the + infix operator or, equivalently, the strConcat function. Strings
can be tested for equality and inequality using the == and != operators. String literals, written in
double-quotes, are described in Section 2.5.

The Char type provides the ability to traverse and modify the characters of a string. The Char type
can be tested for equality and inequality using the == and != operators. The Char type can also be
compared for ordering through the Ord class.

13.4 Tuples

It is frequently necessary to group a small number of values together, e.g., when returning multiple
results from a function. Of course, one could define a special struct type for this purpose, but BSV
predefines a number of structs called tuples that are convenient:
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typedef struct {a _1; b _2;} Tuple2#(type a, type b) deriving (Bits,Eq,Bounded);

typedef Tuple3#(type a, type b, type c) ...;
typedef cees
typedef e Tuple8#(type a, ..., type h) ...;

Values of these types can be created by applying a predefined family of constructor functions:

tuple2 (el, e2)
tuple3d (el, e2, e3)

tuple8 (el, e2, e3, ..., e8)
where the expressions eJ evaluate to the component values of the tuples. The tuple types are defined
in the Standard Prelude package (see Libraries Reference Guide).
Components of tuples can be extracted using a predefined family of selector functions:

tpl_1 (e)

tpl_2 (e)

tpl_8 (e)
where the expression e evaluates to tuple value. Of course, only the first two are applicable to
Tuple2 types, only the first three are applicable to Tuple3 types, and so on.
In using a tuple component selector, it is sometimes necessary to use a static type assertion to help
the compiler work out the type of the result. Example:

UInt#(6)’ (tpl_2 (e))
Tuple components are more conveniently selected using pattern matching. Example:

Tuple2#(int, Bool) xy;

case (xy) matches
{.x, .y }: ... usexandy ...
endcase

13.5 Registers

The most elementary module available in BSV is the register (see Libraries Reference Guide), which
has a Reg interface. Registers are instantiated using the mkReg module, whose single parameter is
the initial value of the register. Registers can also be instantiated using the mkRegU module, which
takes no parameters (don’t-care initial value). The Reg interface type and the module types are
shown below.

interface Reg#(type a);
method Action _write (a x);
method a _read;
endinterface: Reg

module mkReg#(a initVal) (Reg#(a))
provisos (Bits#(a, sa));

module mkRegU (Reg#(a))
provisos (Bits#(a, sa));
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Registers are polymorphic, i.e., in principle they can hold a value of any type but, of course, ulti-
mately registers store bits. Thus, the provisos on the modules indicate that the type must be in the
Bits type class (overloading group), i.e., the operations pack() and unpack() must be defined on
this type to convert into to bits and back.

Section 9.4 describes special notation whereby one rarely uses the _write() and _read methods
explicitly. Instead, one more commonly uses the traditional non-blocking assignment notation for
writes and, for reads, one just mentions the register interface in an expression.

Since mentioning the register interface in an expression is shorthand for applying the _read method,
BSV also provides a notation for overriding this implicit read, producing an expression representing
the register interface itself:

asReg (r)

Since it is also occasionally desired to have automatically read interfaces that are not registers, BSV
also provides a notation for more general suppression of read desugaring, producing an expression
that always represents an interface itself:

asIfc(ifc)

13.6 FIFOs

Package FIFQ (see Libraries Reference Guide) defines several useful interfaces and modules for FIFOs:

interface FIFO#(type a);
method Action enq (a x);
method Action deq;
method a first;
method Action clear;

endinterface: FIFO

module mkFIFO#(FIFO#(a))
provisos (Bits#(a, as));

module mkSizedFIFO#(Integer depth) (FIFO#(a))
provisos (Bits#(a, as));

The FIFO interface type is polymorphic, i.e., the FIFO contents can be of any type a. However,
since FIFOs ultimately store bits, the content type a must be in the Bits type class (overloading
group); this is specified in the provisos for the modules.

The module mkFIFO leaves the capacity of the FIFO unspecified (the number of entries in the FIFO
before it becomes full).

The module mkSizedFIFO takes the desired capacity of the FIFO explicitly as a parameter.

Of course, when compiled, mkFIFO will pick a particular capacity, but for formal verification purposes
it is useful to leave this undetermined. It is often useful to be able to prove the correctness of a design
without relying on the capacity of the FIFO. Then the choice of FIFO depth can only affect circuit
performance (speed, area) and cannot affect functional correctness, so it enables one to separate the
questions of correctness and “performance tuning.” Thus, it is good design practice initially to use
mkFIFO and address all functional correctness questions. Then, if performance tuning is necessary,
it can be replaced with mkSizedFIFQO.
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13.7 FIFOFs

Package FIFOF (see Libraries Reference Guide) defines several useful interfaces and modules for
FIFOs. The FIFQOF interface is like FIFO, but it also has methods to test whether the FIFO is full
or empty:

interface FIFOF#(type a);
method Action enq (a x);
method Action deq;
method a first;
method Action clear;
method Bool notFull;
method Bool notEmpty;

endinterface: FIFOF

module mkFIFOF#(FIFOF#(a))
provisos (Bits#(a, as));

module mkSizedFIFOF#(Integer depth) (FIFOF#(a))
provisos (Bits#(a, as));

The module mkFIFOF leaves the capacity of the FIFO unspecified (the number of entries in the FIFO
before it becomes full). The module mkSizedFIFOF takes the desired capacity of the FIFO as an
argument.

13.8 System tasks and functions

BSV supports a number of Verilog’s system tasks and functions. There are two types of system tasks;
statements which are conceptually equivalent to Action functions, and calls which are conceptually
equivalent to ActionValue and Value functions. Calls can be used within statements.

systemTaskStmt w= systemTaskCall ;

13.8.1 Displaying information

system TaskStmt = displayTaskName ([ expression | , expression | |);

displayTaskName == $display | $displayb | $displayo | $displayh
| $write | $writeb | $writeo | $writeh

These system task statements are conceptually function calls of type Action, and can be used in
any context where an action is expected.

The only difference between the $display family and the $write family is that members of the
former always output a newline after displaying the arguments, whereas members of the latter do
not.

The only difference between the ordinary, b, o and h variants of each family is the format in which
numeric expressions are displayed if there is no explicit format specifier. The ordinary $display
and $write will output, by default, in decimal format, whereas the b, o and h variants will output
in binary, octal and hexadecimal formats, respectively.

There can be any number of argument expressions between the parentheses. The arguments are
displayed in the order given. If there are no arguments, $display just outputs a newline, whereas
$write outputs nothing.
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The argument expressions can be of type String, Char, Bit#(n) (i.e., of type bit [n-1:0]), Integer,
or any type that is a member of the overloading group Bits. Values of type Char are treated as
a String of one character, by implicitly converting to String. Members of Bits will display their
packed representation. The output will be interpreted as a signed number for the types Integer
and Int#(n). Arguments can also be literals. Integers and literals are limited to 32 bits.

Arguments of type String and Char are interpreted as they are displayed. The characters in the
string are output literally, except for certain special character sequences beginning with a % character,
which are interpreted as format-specifiers for subsequent arguments. The following format specifiers
are supported!?:

%d Output a number in decimal format

%b Output a number in binary format

%0 Output a number in octal format

%h Output a number in hexadecimal format

%e Output a character with given ASCII code
%hs Output a string (argument must be a string)
VAT Output a number in time format

%m Output hierarchical name

The values output are sized automatically to the largest possible value, with leading zeros, or in the
case of decimal values, leading spaces. The automatic sizing of displayed data can be overridden
by inserting a value n indicating the size of the displayed data. If n=0 the output will be sized to
minimum needed to display the data without leading zeros or spaces.

ActionValues (see Section 10.7) whose returned type is displayable can also be directly displayed.
This is done by performing the associated action (as part of the action invoking $display) and
displaying the returned value.

Example:
$display ("%t", $time);

For display statements in different rules, the outputs will appear in the usual logical scheduling order
of the rules. For multiple display statements within a single rule, technically there is no defined
ordering in which the outputs should appear, since all the display statements are Actions within
the rule and technically all Actions happen simultaneously in the atomic transaction. However, as
a convenience to the programmer, the compiler will arrange for the display outputs to appear in
the normal textual order of the source text, taking into accout the usual flow around if-then-elses,
statically elaborated loops, and so on. However, for a rule that comprises separately compiled parts
(for example, a rule that invokes a method in a separately compiled module), the system cannot
guarantee the ordering of display statements across compilation boundaries. Within each separately
compiled part, the display outputs will appear in source text order, but these groups may appear in
any order. In particular, verification engineers should be careful about these benign (semantically
equivalent) reorderings when checking the outputs for correctness.

13.8.2 $format

systemTaskCall = $format ([ expression | , expression | ])

13Displayed strings are passed through the compiler unchanged, so other format specifiers may be supported by
your Verilog simulator. Only the format specifiers above are supported by Bluespec’s C-based simulator.
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BSV also supports $format, a display related system task that does not exist in Verilog. $format
takes the same arguments as the $display family of system tasks. However, unlike $display (which
is a function call of type Action), $format is a value function which returns an object of type Fmt (see
Libraries Reference Guide). Fmt representations of data objects can thus be written hierarchically
and applied to polymorphic types. The FShow typeclass is based on this capability.

Example:

typedef struct {0OpCommand command;
Bit#(8) addr;
Bit#(8) data;
Bit#(8) length;
Bool lock;
} Header deriving (Eq, Bits, Bounded);

function Fmt fshow (Header value);
return ($format("<HEAD ")
+

fshow(value.command)
+

$format (" (%0d)", value.length)
+

$format (" A:%h", value.addr)
+

$format (" D:%h>", value.data));
endfunction

13.8.3 Opening and closing file operations

system TaskCall ::= $fopen ( fileName [ , fileType | )
system TaskStmt == $fclose ( fileldentifier ) ;

The $fopen system call is of type ActionValue and can be used anywhere an ActionValue is
expected. The argument fileName is of type String. $fopen returns a fileldentifier of type File. If
there is a fileType argument, the fileldentifier returned is a file descriptor of type FD.

File is a defined type in BSV which is defined as:

typedef union tagged {
void InvalidFile ;
Bit#(31) MCD;
Bit#(31) FD;

} File;

If there is not a fileType argument, the fileldentifier returned is a multi channel descriptor of type
MCD.
One file of type MCD is pre-opened for append, stdout_mcd (value 1).

Three files of type FD are pre-opened; they are stdin (value 0), stdout (value 1), and stderr (value
2). stdin is pre-opened for reading and stdout and stderr are pre-opened for append.

The fileType determines, according to the following table, how other files of type FD are opened:
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File Types for File Descriptors

Argument Description

"r" or "rb" open for reading

"w" or "wb" truncate to zero length or create for writing
llall or n abll

III-_‘_II7 or llr+bll’ or llrb+ll
|IW+II’ or "W+b"’ or "Wb+"
lla+|l, or |Ia+bll’ or |Iab+|l

append; open for writing at end of file, or create for writing
open for update (reading and writing)

truncate or create for update

append; open or create for update at end of file

The $fclose system call is of type Action and can be used in any context where an action is

expected.

13.8.4 Writing to a file

system TaskStmt == fileTaskName ( fileldentifier , | expression [ , expression | ]) ;

fileTaskName

$fdisplay | $fdisplayb | $fdisplayo | $fdisplayh
$furite | $fwriteb | $fwriteo | $fwriteh

These system task calls are conceptually function calls of type Action, and can be used in any
context where an action is expected. They correspond to the display tasks ($display, $write)
but they write to specific files instead of to the standard output. They accept the same arguments

(Section 13.8.1) as the tasks they are based on, with the addition of a first parameter fileIdentifier
which indicates where to direct the file output.

Example:

Reg#(int) cnt <- mkReg(0);

let fh <- mkReg(InvalidFile) ;
let fmcd <- mkReg(InvalidFile) ;

rule open (cnt == 0 ) ;

// Open the file and check for proper opening

String dumpFile =
File 1fh <- $fopen( dumpFile, "w" )
if ( 1fh == InvalidFile )

begin

"dump_filel.dat"

>

$display("cannot open %s", dumpFile);

$finish(0);

end
cnt <=1 ;
fh <= 1fh ;
endrule

rule open2 (cnt == 1) ;

// Save the file in a Register

// Open the file and check for proper opening
// Using a multi-channel descriptor.

String dumpFile =

"dump_file2.dat" ;

File 1lmcd <- $fopen( dumpFile ) ;

if ( lmcd == InvalidFile )

begin

$display("cannot open %s", dumpFile );

$finish(0);
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end
Imcd = 1lmcd | stdout_mcd ; // Bitwise operations with File MCD
cnt <= 2 ;
fmecd <= 1lmcd ; // Save the file in a Register
endrule

rule dump (cnt > 1 );

$fwrite( fh , "cnt = %0d\n", cnt); // Writes to dump_filel.dat
$fwrite( fmcd , "cnt = %0d\n", cnt); // Writes to dump_file2.dat
dump_file2.dat // and stdout
cnt <= cnt + 1;

endrule

13.8.5 Formatting output to a string

system TaskStmt n= stringTaskName ( ifcldentifier , [ expression | , expression | |) ;
string TaskName = $svrite | $swriteb | $swriteo | $swriteh | $sformat

These system task calls are analogous to the $fwrite family of system tasks. They are conceptually
function calls of type Action, and accept the same type of arguments as the corresponding $fwrite
tasks, except that the first parameter must now be an interface with an _write method that takes
an argument of type Bit#(n).

The task $sformat is similar to $swrite, except that the second argument, and only the second
argument, is interpreted as a format string. This format argument can be a static string, or it
can be a dynamic value whose content is interpreted as the format string. No other arguments in
$sformat are interpreted as format strings. $sformat supports all the format specifies supported
by $display, as documented in 13.8.1.

The bsc compiler de-sugars each of these task calls into a call of an ActionValue version of the same
task. For example:

$swrite(foo, "The value is %d", count);

de-sugars to

let x <- $swriteAV("The value is %d", count);
foo <= x;

An ActionValue value version is available for each of these tasks. The associated syntax is given
below.

systemTaskCall n= stringAVTaskName (| expression [ , expression | |)
stringAVTaskName = $swriteAV | $swritebAV | $swriteoAV | $swritehAV | $sformatAV
The ActionValue versions of these tasks can also be called directly by the user.

Use of the system tasks described in this section allows a designer to populate state elements with
dynamically generated debugging strings. These values can then be viewed using other display tasks
(using the %s format specifier) or output to a VCD file for examination in a waveform viewer.

13.8.6 Reading from a file

systemTaskCall n= $fgetc ( fileldentifier )
system TaskStmt = $ungetc ( expression, fileldentifier ) ;
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The $fgetc system call is a function of type ActionValue#(int) which returns an int from the file
specified by fileldentifier.

The $ungetc system statement is a function of type Action which inserts the character specified by
expression into the buffer specified by fileldentifier.

Example:

rule open ( True ) ;
String readFile = '"gettests.dat";
File 1fh <- $fopen(readFile, "r" ) ;

int i <- $fgetc( 1fh );

if (i'=-1)
begin
Bit#(8) c¢ = truncate( pack(i) ) ;
end
else // an error occurred.
begin
$display( "Could not get byte from %s",
readFile ) ;
end

$fclose ( 1fh ) ;
$£finish(0);
endrule

13.8.7 Flushing output

systemTaskStmt = $£flush ([ fileldentifier | ) ;

The system call $fflush is a function of type Action and can be used in any context where an
action is expected. The $£flush function writes any buffered output to the file(s) specified by the
fileIdentifier. If no argument is provided, $£f1ush writes any buffered output to all open files.

13.8.8 Stopping simulation
system TaskStmt == $finish [ ( expression ) | ;
| $stop [ ( expression) | ;

These system task calls are conceptually function calls of type Action, and can be used in any
context where an action is expected.

The $finish task causes simulation to stop immediately and exit back to the operating system. The
$stop task causes simulation to suspend immediately and enter an interactive mode. The optional
argument expressions can be 0, 1 or 2, and control the verbosity of the diagnostic messages printed
by the simulator. the default (if there is no argument expression) is 1.

13.8.9 VCD dumping

system TaskStmt = $dumpvars | $dumpon | $dumpoff ;

These system task calls are conceptually function calls of type Action, and can be used in any
context where an action is expected.
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A call to $dumpvars starts dumping the changes of all the state elements in the design to the
VCD file. BSV’s $dumpvars does not currently support arguments that control the specific module
instances or levels of hierarchy that are dumped.

Subsequently, a call to $dumpoff stops dumping, and a call to $dumpon resumes dumping.

13.8.10 Time functions

systemFunctionCall = $time | $stime

These system function calls are conceptually of ActionValue type (see Section 10.7), and can be
used anywhere an ActionValue is expected. The time returned is the time when the associated
action was performed.

The $time function returns a 64-bit integer (specifically, of type Bit#(64)) representing time, scaled
to the timescale unit of the module that invoked it.

The $stime function returns a 32-bit integer (specifically, of type Bit#(32)) representing time,
scaled to the timescale unit of the module that invoked it. If the actual simulation time does not fit
in 32 bits, the lower-order 32 bits are returned.

13.8.11 Real functions

There are two system tasks defined for the Real data type (see Libraries Reference Guide), used to
convert between Real and IEEE standard 64-bit vector representation, $realtobits and $bitstoreal.
They are identical to the Verilog functions.

systemTaskCall = $realtobits ( expression )

systemTaskCall = $bitstoreal ( expression )

13.8.12 Testing command line input

Information for use in simulation can be provided on the command line. This information is spec-
ified via optional arguments in the command used to invoke the simulator. These arguments are
distinguished from other simulator arguments by starting with a plus (+) character and are therefore
known as plusargs. Following the plus is a string which can be examined during simulation via
system functions.

systemTaskCall n= $testPplusargs ( expression )

The $test$plusargs system function call is conceptually of ActionValue type (see Section 10.7),
and can be used anywhere an ActionValue is expected. An argument of type String is expected
and a boolean value is returned indicating whether the provided string matches the beginning of any
plusarg from the command line.

14 Guiding the compiler with attributes

This section describes how to guide the compiler in some of its decisions using BSV’s attribute
syntax.

attributeInstances = attributeInstance
{ attributeInstance }

attributelnstance m= (* attrSpec { , attrSpec } *)
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attrSpec = attrName | = expression |
attrName = ddentifier |Identifier

Multiple attributes can be written together on a single line

(* synthesize, always_ready = "read, subifc.enq" *)

Or attributes can be written on multiple lines
(* synthesize *)
(* always_ready = "read, subifc.enq" *)

Attributes can be associated with a number of different language constructs such as module, interface,
and function definitions. A given attribute declaration is applied to the first attribute construct that
follows the declaration.

14.1 Verilog module generation attributes
In addition to compiler flags on the command line, it is possible to guide the compiler with attributes
that are included in the BSV source code.

The attributes synthesize and noinline control code generation for top-level modules and func-
tions, respectively.

Attribute name | Section | Top-level module | Top-level function

definitions definitions

synthesize | 14.1.1 Vv
noinline 14.1.2 N

14.1.1 synthesize

When the compiler is directed to generate Verilog or Bluesim code for a BSV module, by default it
tries to integrate all definitions into one big module. The synthesize attribute marks a module for
code generation and ensures that, when generated, instantiations of the module are not flattened but
instead remain as references to a separate module definition. Modules that are annotated with the
synthesize attribute are said to be synthesized modules. The BSV hierarchy boundaries associated
with synthesized modules are maintained during code generation. Not all BSV modules can be
synthesized modules (i.e.,can maintain a module boundary during code generation). Section 5.8
describes in more detail which modules are synthesizable.

14.1.2 noinline

The noinline attribute is applied to functions, instructing the compiler to generate a separate
module for the function. This module is instantiated as many times as required by its callers. When
used in complicated calling situations, the use of the noinline attribute can simplify and speed up
compilation. The noinline attribute can only be applied to functions that are defined at the top
level and the inputs and outputs of the function must be in the typeclass Bits.

Example:
(* noinline *)
function Bit#(LogK) popCK(Bit#(K) x);

return (popCountTable(x));
endfunction: popCK
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14.2 Interface attributes

Interface attributes express protocol and naming requirements for generated Verilog interfaces. They
are considered during generation of the Verilog module which uses the interface. These attributes
can be applied to synthesized modules, methods, interfaces, and subinterfaces at the top level only.
If the module is not synthesized, the attribute is ignored. The following table shows which attributes
can be applied to which elements. These attributes cannot be applied to Clock, Reset, or Inout
subinterface declarations.

Synthesized Interface Methods of | Subinterfaces of
Attribute name | Section module type interface type | interface type
definitions | declarations | declarations declarations
ready= | 14.2.1 N
enable= 14.2.1 v
result= | 14.2.1 N4
prefix= 14.2.1 v v
port= | 14.2.1 v
always_ready 14.2.2 vV Vi Vi Vv
always_enabled | 14.2.2 Vv Vv vV v

There is a direct correlation between interfaces in BSV and ports in the generated Verilog. These
attributes can be applied to interfaces to control the naming and the protocols of the generated
Verilog ports.

BSV uses a simple Ready-Enable micro-protocol for each method within the module’s interface. Each
method contains both a output Ready (RDY) signal and an input Enable (EN) signal in addition
to any needed directional data lines. When a method can be safely called it asserts its RDY signal.
When an external caller sees the RDY signal it may then call (in the same cycle) the method by
asserting the method’s EN signal and providing any required data.

Generated Verilog ports names are based the method name and argument names, with some standard
prefixes. In the ActionValue method method1 shown below

method ActionValue#( type_out ) methodl ( type_in data_in ) ;

the following ports are generated:

RDY_methodl
EN_method1l
methodl
methodl_data_in

Output ready signal of the protocol

Input signal for Action and Action Value methods
Output signal of ActionValue and Value methods
Input signal for method arguments

Interface attributes allow control over the naming and protocols of individual methods or entire
interfaces.

14.2.1 Renaming attributes

ready= and enable= Ready and enable ports use RDY_ and EN_ as the default prefix to the method
names. The attributes ready= "string’ and enable= 7string’ replace the prefix annotation and
method name with the specified string as the name instead. These attributes may be associated
with method declarations (methodProto) only (Section 5.2).

In the above example, the following attribute would replace the RDY_method1 with avMethodIsReady
and EN_methodl with GO.
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(* ready = "avMethodIsReady", enable = "GO" *)

Note that the ready= attribute is ignored if the method or module is annotated as always_ready
or always_enabled, while the enable= attribute is ignored for value methods as those are annotated
as always_enabled.

result= By default the output port for value methods and ActionValue methods use the method
name. The attribute result = 7string” causes the output to be renamed to the specified string.
This is useful when the desired port names must begin with an upper case letter, which is not valid
for a method name. These attributes may be associated with method declarations (methodProto)
only (Section 5.2).

In the above example, the following attribute would replace the method1 port with OUT.
(* result = "QUT" *)

Note that the result= attribute is ignored if the method is an Action method which does not
return a result.

prefix= and port= By default, the input ports for methods are named by using the name of the
method as the prefix and the name of the method argument as the suffix, into method_argument.
The prefix and/or suffix name can be replaced by the attributes prefix= "string” and port= "string’.
By combining these attributes any desired string can be generated. The prefix= attribute replaces
the method name and the port= attribute replaces the argument name in the generated Verilog port
name. The prefix string may be empty, in which case the joining underscore is not added.

The prefix= attribute may be associated with method declarations (methodProto) or subinterface
declarations (subinterfaceDecl). The port= attribute may be associated with each method prototype
argument in the interface declaration (methodProtoFormal ) (Section 5.2).

In the above example, the following attribute would replace the method1_data_in port with IN_DATA.

(* prefix = "" *)
method ActionValue#( type_out )
method1( (* port="IN_DATA" *) type_in data_in ) ;

Note that the prefix= attribute is ignored if the method does not have any arguments.

The prefix= attribute may also be used on subinterface declarations to aid the renaming of interface
hierarchies. By default, interface hierarchies are named by prefixing the subinterface name to names
of the methods within that interface (Section 5.2.1.) Using the prefix attribute on the subinterface
is a way of replacing the subinterface name. This is demonstrated in the example in Section 14.2.3.

14.2.2 Port protocol attributes

The port protocol attributes always_enabled and always_ready remove unnecessary ports. These
attributes are applied to synthesized modules, methods, interfaces, and subinterfaces at the top
level only. If the module is not synthesized, the attribute is ignored. The compiler verifies that the
attributes are correctly applied.

The attribute always_enabled specifies that no enable signal will be generated for the associated
interface methods. The methods will be executed on every clock cycle and the compiler verifies that
the caller does this.
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The attribute always_ready specifies that no ready signals will be generated. The compiler verifies
that the associated interface methods are permanently ready. always_enabled implies always_ready.

The always_ready and always_enabled attributes can be associated with the method declara-
tions (methodProto), the subinterface declarations (subinterfaceDecl), or the interface declaration
(interfaceDecl) itself. In these cases, the attribute does not take any arguments. Example:

interface Test;

(* always_enabled *)

method ActionValue#(Bool) check;
endinterface: Test

The attributes can also be associated with a module, in which case the attribute can have as an
argument the list of methods to which the attribute is applied. When associated with a module, the
attributes are applied when the interface is implemented by a module, not at the declaration of the
interface. Example:

interface ILookup; //the definition of the interface
interface Fifo#(int) subifc;
method Action read ();

endinterface: ILookup

(* synthesize *)
(* always_ready = "read, subifc.enq" * )//the attribute is applied when the
module mkServer (ILookup); //interface is implemented within
//a module.

endmodule: mkServer

In this example, note that only the enq method of the subifc interface is always_ready. Other
methods of the interface, such as deq, are not always_ready.

If every method of the interface is always_ready or always_enabled, individual methods don’t have
to be specified when applying the attribute to a module. Example:

(* synthesize *)
(* always_enabled *)
module mkServer (ILookup);

14.2.3 Interface attributes example

(* always_ready *) // all methods in this and all subinterface
// have this property
// always_enabled is also allowed here
interface ILookup;
(x prefix = "" %) // subifc_ will not be used in naming
// always_enabled and always_ready are allowed.
interface Fifo#(int) subifc;

(* enable = "GOread" *) // EN_read becomes GOread
method Action read ();
(* always_enabled *) // always_enabled and always_ready
// are allowed on any individual method
(* result = "CHECKOK" *) // output checkData becomes CHECKOK
(x prefix = "" %) // checkData_datainl becomes DIN1
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// checkData_datain2 becomes DIN2
method ActionValue#(Bool) checkData ( (* port= "DIN1" *) int datainl
(* port= "DIN2" *) int datain2 ) ;

endinterface: ILookup

14.3 Scheduling attributes

Attribute name | Section Module rule rules
definitions | definitions | expressions

fire_when_enabled 14.3.1
no_implicit_conditions 14.3.2
descending_urgency 14.3.3
execution_order 14.3.4
mutually_exclusive 14.3.5
conflict_free 14.3.6

preempts 14.3.7

<=
<SS
<=

Scheduling attributes are used to express certain performance requirements. When the compiler
maps rules into clocks, as described in Section 6.2.2, scheduling attributes guide or constrain its
choices, in order to produce a schedule that will meet performance goals.

Scheduling attributes are most often attached to rules or to rule expressions, but some can also be
added to module definitions.

The scheduling attributes are are only applied when the module is synthesized.

14.3.1 fire_when_enabled

The fire_when_enabled scheduling attribute immediately precedes a rule (just before the rule
keyword) and governs the rule.

It asserts that this rule must fire whenever its predicate and its implicit conditions are true, i.e.,
when the rule conditions are true, the attribute checks that there are no scheduling conflicts with
other rules that will prevent it from firing. This is statically verified by the compiler. If the rule
won’t fire, the compiler will report an error.

Example. Using fire_when_enabled to ensure the counter is reset:

// IfcCounter with read method
interface IfcCounter#(type t);
method t readCounter;

endinterface

// Definition of CounterType
typedef Bit#(16) CounterType;

// Module counter using IfcCounter interface. It never contains O.
(* synthesize,
reset_prefix= "reset_b",

clock_prefix= "counter_clk",
always_ready= "readCounter",
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always_enabled= "readCounter" x)

module counter (IfcCounter#(CounterType));
// Reg counter gets reset to 1 asynchronously with the RST signal
Reg# (CounterType)  counter <- mkRegA(1);

// Next rule resets the counter to 1 when it reaches its limit.

// The attribute fire_when_enabled will check that this rule will fire
// if counter == ’1

(x fire_when_enabled *)

rule resetCounter (counter == ’1);
counter <= 1;
endrule

// Next rule updates the counter.
rule updateCounter;

counter <= counter + 1;
endrule

// Method to output the counter’s value
method CounterType readCounter;
return counter;
endmethod
endmodule

Rule resetCounter conflicts with rule updateCounter because both rules try to read and write the
counter register when it contains all its bits set to one. If the rule updateCounter is more urgent, only
the rule updateCounter will fire. In this case, the assertion fire_when_enabled will be violated and
the compiler will produce an error message. Note that without the assertion fire_when_enabled
the compilation process will be correct.

14.3.2 no_implicit_conditions
The no_implicit_conditions scheduling attribute immediately precedes a rule (just before the
rule keyword) and governs the rule.

It asserts that the implicit conditions of all interface methods called within the rule must always
be true; only the explicit rule predicate controls whether the rule can fire or not. This is statically
verified by the compiler, and it will report an error if necessary.

Example:

// Import the FIFO package
import FIFO :: *;

// IfcCounter with read method
interface IfcCounter#(type t);

method t readCounter;
method Action setReset(t a);
endinterface

// Definition of CounterType
typedef Bit#(16) CounterType;
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// Module counter using IfcCounter interface
(* synthesize,

reset_prefix = "reset_b",
clock_prefix = "counter_clk",
always_ready = "readCounter",
always_enabled = "readCounter" x*)

module counter (IfcCounter#(CounterType));

// Reg counter gets reset to 1 asynchronously with the RST signal
Reg#(CounterType)  counter <- mkRegA(1);

// The 4 depth valueFifo contains a list of reset values
FIFO#(CounterType) valueFifo <- mkSizedFIFO(4);

/*  Next rule increases the counter with each counter_clk rising edge
if the maximum has not been reached */
(* no_implicit_conditions *)
rule updateCounter;
if (counter != ’1)
counter <= counter + 1;
endrule

// Next rule resets the counter to a value stored in the valueFifo
(* no_implicit_conditions *)
rule resetCounter (counter == ’1);
counter <= valueFifo.first();
valueFifo.deqQ);
endrule

// Output the counters value

method CounterType readCounter;
return counter;

endmethod

// Update the valueFifo
method Action setReset(CounterType a);
valueFifo.enq(a);
endmethod
endmodule

The assertion no_implicit_conditions is incorrect for the rule resetCounter, resulting in a com-
pilation error. This rule has the implicit condition in the FIFO module due to the fact that the deq
method cannot be invoked if the fifo valueFifo is empty. Note that without the assertion no error
will be produced and that the condition if (counter != ’1) is not considered an implicit one.

14.3.3 descending_urgency

The compiler maps rules into clocks, as described in Section 6.2.2. In each clock, amongst all the
rules that can fire in that clock, the system picks a subset of rules that do not conflict with each
other, so that their parallel execution is consistent with the reference TRS semantics. The order in
which rules are considered for selection can affect the subset chosen. For example, suppose rules ri
and r2 conflict, and both their conditions are true so both can execute. If r1 is considered first and
selected, it may disqualify r2 from consideration, and vice versa. Note that the urgency ordering is
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independent of the TRS ordering of the rules, i.e., the TRS ordering may be r1 before r2, but either
one could be considered first by the compiler.

The designer can specify that one rule is more urgent than another, so that it is always considered
for scheduling before the other. The relationship is transitive, i.e., if rule r1 is more urgent than
rule r2, and rule r2 is more urgent than rule r3, then r1 is considered more urgent than r3.

Urgency is specified with the descending_urgency attribute. Its argument is a string containing a
comma-separated list of rule names (see Section 5.6 for rule syntax, including rule names). Example:

(* descending_urgency = "rl, r2, r3" *)

This example specifies that r1 is more urgent than r2 which, in turn, is more urgent than r3.

If urgency attributes are contradictory, i.e., they specify both that one rule is more urgent than
another and its converse, the compiler will report an error. Note that such a contradiction may
be a consequence of a collection of urgency attributes, because of transitivity. One attribute may
specify r1 more urgent than r2, another attribute may specify r2 more urgent than r3, and another
attribute may specify r3 more urgent than ri, leading to a cycle, which is a contradiction.

The descending_urgency attribute can be placed in one of three syntactic positions:

e It can be placed just before the module keyword in a module definitions (Section 5.3), in which
case it can refer directly to any of the rules inside the module.

e It can be placed just before the rule keyword in a rule definition, (Section 5.6) in which case
it can refer directly to the rule or any other rules at the same level.

e It can be placed just before the rules keyword in a rules expression (Section 10.13), in which
case it can refer directly to any of the rules in the expression.

In addition, an urgency attribute can refer to any rule in the module hierarchy at or below the
current module, using a hierarchical name. For example, suppose we have:

module mkFoo ...;
mkBar the_bar (barInterface);

(* descending_urgency = "rl, the_bar.r2" *)
rule r1 ...

endrule
endmodule: mkFoo

The hierarchical name the_bar.r2 refers to a rule named r2 inside the module instance the_bar.
This can be several levels deep, i.e., the scheduling attribute can refer to a rule deep in the module
hierarchy, not just the submodule immediately below. In general a hierarchical rule name is a
sequence of module instance names and finally a rule name, separated by periods.

A reference to a rule in a submodule cannot cross synthesis boundaries. This is because synthesis
boundaries are also scheduler boundaries. Each separately synthesized part of the module hierarchy
contains its own scheduler, and cannot directly affect other schedulers. Urgency can only apply to
rules considered within the same scheduler.

If rule urgency is not specified, and it impacts the choice of schedule, the compiler will print a
warning to this effect during compilation.

Example. Using descending_urgency to control the scheduling of conflicting rules:
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// IfcCounter with read method
interface IfcCounter#(type t);
method t readCounter;

endinterface

// Definition of CounterType
typedef Bit#(16) CounterType;

// Module counter using IfcCounter interface. It never contains O.
(* synthesize,

reset_prefix= "reset_b",

clock_prefix= "counter_clk",

always_ready= "readCounter",

always_enabled= "readCounter" *)
module counter (IfcCounter#(CounterType));

// Reg counter gets reset to 1 asynchronously with the RST signal
Reg# (CounterType)  counter <- mkRegA(1);

/% The descending_urgency attribute will indicate the scheduling
order for the indicated rules. */
(* descending_urgency = "resetCounter, updateCounter" *)

// Next rule resets the counter to 1 when it reaches its limit.

rule resetCounter (counter == ’1);
action
counter <= 1;
endaction
endrule

// Next rule updates the counter.
rule updateCounter;
action

counter <= counter + 1;
endaction
endrule

// Method to output the counter’s value
method CounterType readCounter;

return counter;
endmethod

endmodule

Rule resetCounter conflicts with rule updateCounter because both try to modify the counter
register when it contains all its bits set to one. Without any descending_urgency attribute, the
updateCounter rule may obtain more urgency, meaning that if the predicate of resetCounter is

met, only the rule updateCounter will fire. By setting the descending_urgency attribute the
designer can control the scheduling in the case of conflicting rules.

14.3.4 execution_order

With the execution_order attribute, the designer can specify that, when two rules fire in the same
cycle, one rule should sequence before the other. This attribute is similar to the descending_urgency
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attribute (section 14.3.3) except that it specifies the execution order instead of the urgency order.
The execution_order attribute may occur in the same syntactic positions as the descending_urgency
attribute (Section 14.3.3) and takes a similar argument, a string containing a comma-separated list
of rule names. Example:

(* execution_order = "rl, r2, r3" x*)

This example specifies that r1 should execute before r2 which, in turn, should execute before r3.

If two rules cannot execute in the order specified, because of method calls which must sequence in
the opposite order, for example, then the two rules are forced to conflict.

14.3.5 mutually_exclusive

The scheduler always attempts to deduce when two rules are mutually exclusive (based on their
predicates). However, this deduction can fail even when two rules are actually exclusive, either
because the scheduler effort limit is exceeded or because the mutual exclusion depends on a higher-
level invariant that the scheduler does not know about. The mutually_exclusive attribute allows
the designer to overrule the scheduler’s deduction and forces the generated schedule to treat the
annotated rules as exclusive. The mutually_exclusive attribute may occur in the same syntactic
positions as the descending_urgency attribute (Section 14.3.3) and takes a similar argument, a
string containing a comma-separated list of rule names. Example:

(* mutually_exclusive = "ril, r2, r3" *)

This example specifies that every pair of rules that are in the annotation (i.e (r1, r2), (r1, r3), and
(r2, r3)) is a mutually-exclusive rule pair.

Since an asserted mutual exclusion does not come with a proof of this exclusion, the compiler will
insert code that will check and generate a runtime error if two rules ever execute during the same clock
cycle during simulation. This allows a designer to find out when their use of the mutually_exclusive
attribute is incorrect.

14.3.6 conflict_free

Like the mutually_exclusive rule attribute (section 14.3.5), the conflict_free rule attribute is a
way to overrule the scheduler’s deduction about the relationship between two rules. However, unlike
rules that are annotated mutually_exclusive, rules that are conflict_free may fire in the same
clock cycle. Instead, the conflict_free attribute asserts that the annotated rules will not make
method calls that are inconsistent with the generated schedule when they execute.

The conflict_free attribute may occur in the same syntactic positions as the descending_urgency
attribute (Section 14.3.3) and takes a similar argument, a string containing a comma-separated list
of rule names. Example:

(* conflict_free = "r1, r2, r3" x*)
This example specifies that every pair of rules that are in the annotation (i.e (r1, r2), (r1, £3), and

(r2, r3)) is a conflict-free rule pair.

For example, two rules may both conditionally enqueue data into a FIFO with a single enqueue
port. Ordinarily, the scheduler would conclude that the two rules conflict since they are competing
for a single method. However, if they are annotated as conflict_free the designer is asserting that
when one rule is enqueuing into the FIFO, the other will not be, so the conflict is apparent, not real.

130



BSV Reference Guide

With the annotation, the schedule will be generated as if any conflicts do not exist and code will be
inserted into the resulting model to check if conflicting methods are actually called by the conflict
free rules during simulation.

It is important to know the conflict_free attribute’s capabilities and limitations. The attribute
works with more than method calls that totally conflict (like the single enqueue port). During simu-
lation, it will check and report any method calls amongst conflict_free rules that are inconsistent
with the generated schedule (including registers being read after they have been written and wires
being written after they are read). On the other hand, the conflict_free attribute does not over-

rule the scheduler’s deductions with respect to resource usage (like uses of a multi-ported register
file).

14.3.7 preempts

The designer can also prevent a rule from firing whenever another rule (or set of rules) fires. The
preempts attribute accepts two elements as arguments. Each element may be either a rule name or
a list of rule names. A list of rule names must be separated by commas and enclosed in parentheses.
In each cycle, if any of the rule names specified in the first list can be executed and are scheduled
to fire, then none of the rules specified in the second list will be allowed to fire.

The preempts attribute is similar to the descending_urgency attribute (section 14.3.3), and may
occur in the same syntactic positions. The preempts attribute is equivalent to forcing a conflict
and adding descending_urgency. With descending_urgency, if two rules do not conflict, then
both would be allowed to fire even if an urgency order had been specified; with preempts, if one
rule preempts the other, they can never fire together. If r1 preempts r2, then the compiler forces a
conflict and gives r1 priority. If r1 is able to fire, but is not scheduled to, then r2 can still fire.

Examples:
(x preempts = "rl, r2" *)

If r1 will fire, r2 will not.
(* preempts = "(rl, r2), r3" %)

If either r1 or r2 (or both) will fire, r3 will not.
(x preempts = "(the_bar.rl, (r2, r3)" *)

If the rule r1 in the submodule the_bar will fire, then neither r2 nor r3 will fire.

14.4 Evaluation behavior attributes

14.4.1 split and nosplit

Attribute name | Section Action ActionValue
statements statements
’ split/nosplit [ 14.4.1 | v \ vV ‘

The split/nosplit attributes are applied to Action and ActionValue statements, but cannot
precede certain expressions inside an action/endaction including return, variable declarations,
instantiations, and function statements.
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When a rule contains an if (or case) statement, the compiler has the option either of splitting the
rule into two mutually exclusive rules, or leaving it as one rule for scheduling but using MUXes in the
production of the action. Rule splitting can sometimes be desirable because the two split rules are
scheduled independently, so non-conflicting branches of otherwise conflicting rules can be scheduled
concurrently. Splitting also allows the split fragments to appear in different positions in the logical
execution order, providing the effect of condition dependent scheduling.

Splitting is turned off by default for two reasons:

e When a rule contains many if statements, it can lead to an exponential explosion in the
number of rules. A rule with 15 if statements might split into 2'° rules, depending on how
independent the statements and their branch conditions are. An explosion in the number of
rules can dramatically slow down the compiler and cause other problems for later compiler
phases, particularly scheduling.

e Splitting propagates the branch condition of each if to the predicates of the split rules. Re-
sources required to compute rule predicates are reserved on every cycle. If a branch condition
requires a scarce resource, this can starve other parts of the design that want to use that
resource.

The split and nosplit attributes override any compiler flags, either the default or a flag entered
on the command line (-split-if).

The split attribute splits all branches in the statement immediately following the attribute state-
ment, which must be an Action statement. A split immediately preceding a binding (e.g. let)
statement is not valid. If there are nested if or case statements within the split statement, it will
continue splitting recursively through the branches of the statement. The nosplit attribute can be
used to disable rule splitting within nested if statements.

Example:

module mkConditional#(Bit#(2) sel) ();
Reg#(Bit#(4)) a <- mkReg(0);
Regi# (Bool) done <- mkReg(False);

rule finish ;
(xsplitx*)
if (a == 3)
begin
done <= True;
end
else
(*nosplitx*)
if (a == 0)
begin
done <= False;
a <= 1;
end
else
begin
done <= False;
end
endrule
endmodule

To enable rule splitting for an entire design, use the compiler flag —split-if at compile time. See
the Bluespec Compiler (BSC) User Guide for more information on compiler flags. You can enable

132



BSV Reference Guide

rule splitting for an entire design with the -split-if flag and then disable the effect for specific
rules, by specifying the nosplit attribute before the rules you do not want to split.

14.5 Input clock and reset attributes

The following attributes control the definition and naming of clock oscillator, clock gate, and reset
ports. The attributes can only be applied to top-level module definitions.

’ Attribute name \ Section \ Top-level module ‘
clock_prefix= 14.5.1 Vv
gate_prefix= 14.5.1 v
reset_prefix= 14.5.1 Vv
gate_input_clocks= 14.5.2 Vv
gate_all_clocks 14.5.2 vV
default_clock_osc= 14.5.3 Vv
default_clock_gate= 14.5.3 vV
default_gate_inhigh 14.5.3 Vv
default_gate_unused 14.5.3 V
default_reset= 14.5.3 N
clock_family= 14.5.4 vV
clock_ancestors= 14.5.4 Vv

14.5.1 Clock and reset prefix naming attributes

The generated port renaming attributes clock_prefix=, gate_prefix=, and reset_prefix= re-
name the ports for the clock oscillators, clock gates, and resets in a module by specifying a prefix
string to be added to each port name. The prefix is used only when a name is not provided for the
port, (as described in Sections 14.5.3 and 14.6.1), requiring that the port name be created from the
prefix and argument name. The attributes are associated with a module and are only applied when
the module is synthesized.

Clock Prefix Naming Attributes

Attribute Default name Description

clock_prefix= CLK Provides the prefix string to be added to port names for
all the clock oscillators in a module.

gate_prefix= CLK_GATE Provides the prefix string to be added to port names for
all the clock gates in a module.

reset_prefix= RST_N Provides the prefix string to be added to port names for
all the resets in a module.

If a prefix is specified as the empty string, then no prefix will be used when creating the port names;
that is the argument name alone will be used as the name.

Example:

(* synthesize, clock_prefix = "CK" *)
module mkMod(Clock clk2, ModIfc ifc);

generates the following in the Verilog:
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module mkMod (CK, RST_N, CK_clk2,

Where CK is the default clock (using the user-supplied prefix), RST_N is the default reset (using the
default prefix), and CK_c1k2 is the oscillator for the input c1k2 (using the user-supplied prefix).

14.5.2 Gate synthesis attributes

When a module is synthesized, one port, for the oscillator, is created for each clock input (including
the default clock). The gate for the clock is defaulted to a logical 1. The attributes gate_all_clocks
and gate_input_clocks= specify that a second port be generated for the gate.

The attribute gate_all_clocks will add a gate port to the default clock and to all input clocks.
The attribute gate_input_clocks= is used to individually specify each input clock which should
have a gate supplied by the parent module.

If an input clock is part of a vector of clocks, the gate port will be added to all clocks in the vector.
Example:

(* gate_input_clocks = "clks, c2" *)
module mkM(Vector#(2, Clock) clks, Clock c2);

In this example, a gate port will be added to both the clocks in the vector clks and the clock c2.
A gate port cannot be added to just one of the clocks in the vector clks.

The gate_input_clocks= attribute can be used to add a gate port to the default clock. Example:

( * gate_input_clocks = "default_clock" * )

Note that by having a gate port, the compiler can no longer assume the gate is always logical 1. This
can cause an error if the clock is connected to a submodule which requires the gate to be logical 1.

The gate synthesis attributes are associated with a module and are only applied when the module
is synthesized.

14.5.3 Default clock and reset naming attributes

The default clock and reset naming attributes are associated with a module and are only applied
when the module is synthesized.

The attributes default_clock_osc=, default_clock_gate=, and default_reset= provide the
names for the default clock oscillator, default gate, and default reset ports for a module. When
a name for the default clock or reset is provided, any prefix attribute for that port is ignored.

The attributes default_gate_inhigh and default_gate_unused indicate that a gate port should
not be generated for the default clock and whether the gate is always logical 1 or unused. The default
is default_gate_inhigh. This is only necessary when the attribute gate_all_clocks (section
14.5.2) has been used.

The attributes no_default_clock and no_default_reset are used to remove the ports for the
default clock and the default reset.
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Default Clock and Reset Naming Attributes
Attribute Description
default_clock_osc= Provides the name for the default oscillator port.
no_default_clock Removes the port for the default clock.
default_clock_gate= Provides the name for the default gate port.
default_gate_inhigh Removes the gate ports for the module and the gate is always
high.
default_gate_unused Removes the gate ports for the module and the gate is un-
used.
default_reset= Provides the name for the default reset port.
no_default_reset Removes the port for the default reset.

14.5.4 Clock family attributes

The clock_family and clock_ancestors attributes indicate to the compiler that clocks are in the
same domain in situations where the compiler may not recognize the relationship. For example, when
clocks split in synthesized modules and are then recombined in a subsequent module, the compiler
may not recognize that they have a common ancestor. The clock_ancestors and clock_family
attributes allow the designer to explicitly specify the family relationship between the clocks. These
attributes are applied to modules only.

The clock_ancestors attribute specifies an ancestry relationship between clocks. A clock is a gated
version of its ancestors. In other words, if clk1 is an ancestor of c1k2 then clk2 is a gated version
of clk1, as specified in the following statement:

(* clock_ancestors = "clkl AOF clk2" x*)

Multiple ancestors as well as multiple independent groups can be listed in a single attribute state-
ment. For example:

(* clock_ancestors = "clkl AOF clk2 AOF clk3, clkl AOF clk4, clka AOF clkb" x)

The above statement specifies that clk1 is an ancestor of c1k2, which is itself an ancestor of clk3;
that clk1 is also an ancestor of clk4; and that clka is an ancestor of clkb. You can also repeat
the attribute statement instead of including all clock ancestors in a single statement. Example:

(* clock_ancestors = "clkl AOF clk2 AQOF clk3" *)
(* clock_ancestors "clkl AQF clk4" %)
(* clock_ancestors "clka AOF clkb" x*)

For clocks which do not have an ancestor relationship, but do share a common ancestor, you can
use the clock_family attribute. Clocks which are in the same family have the same oscillator with
a different gate. To be in the same family, one does not have to be a gated version of the other,
instead they may be gated versions of a common ancestor.

(* clock_family = "clkl, clk2, clk3" *)

Note that clock_ancestors implies clock_family.
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14.6 Module argument and parameter attributes

The attributes in this section are applied to module arguments and module parameters. The fol-
lowing table shows which type of module argument or parameter each attribute can be applied to.
More information on module arguments and module parameters can be found in Section 5.3.

In most instances BSV allows arguments and parameters to be enclosed in a single set of parentheses,
in which case the # is eliminated. However, the compiler is stricter about where attributes are
placed. Only port attributes can be placed in the attribute list () and only parameter attributes in
the parameter #() list.

Examples:

(* synthesize *)

module mkMod((* osc="ACLK", gate="AGATE" %) Clock clk,
(* reset="RESET" *) Reset rst,
ModIfc ifc);

module mkMod #((* parameter="DATA_WIDTH" *) parameter Int#(8) width)
( ModIfc ifc );

Clock/ Reset/ Inout/ Value
Attribute | Section | vector of clock | vector of reset | vector of inouts | argument | Parameter
osc= 14.6.1
gate= 14.6.1

gate_inhigh 14.6.1

<=

gate_unused 14.6.1

reset= 14.6.1

<

clocked_by= 14.6.2

reset_by= 14.6.3

<<
<=

port= 14.6.4

parameter= 14.6.5 N

14.6.1 Argument-level clock and reset naming attributes

The non-default clock and reset inputs to a module will have a port name created using the argument
name and any associated prefix for that port type. This name can be overridden on a per-argument
basis by supplying argument-level attributes that specify the names for the ports.

These attributes are applied to the clock module arguments, except for reset= which is applied to
the reset module arguments.

Argument-level Clock and Reset Naming Attributes

Attribute Applies to Description

osc= Clock or vector of clocks | Provides the full name of the oscillator port.
module arguments

gate= Clock or vector of clocks | Provides the full name of the gate port.

module arguments
gate_inhigh | Clock or vector of clocks | Indicates that the gate port should be omitted and

module arguments the gate is assumed to be high.

gate_unused | Clock or vector of clocks | Indicates that the gate port should be omitted and is
module arguments never used within the module.

reset= Reset or vector of resets | Provides the full name of the reset port.

module arguments
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Example:

(* synthesize *)

module mkMod((* osc="ACLK", gate="AGATE" *) Clock clk,
(* reset="RESET" *) Reset rst,
ModIfc ifc);

generates the following in the Verilog:

module mkMod(CLK, RST_N, ACLK, AGATE, RESET,

The attributes can be applied to the base name generated for a vector of clocks, gates or resets.
Example:

(* synthesize *)

module mkMod((* osc="ACLK", gate="AGATE" *) Vector#(2, Clock) clks,
(* reset="ARST" *) Vector#(2, Reset) rsts,
ModIfc ifc);

generates the following in the Verilog:

module mkMod(CLK, RST_N, ACLK_O, AGATE_O, ACLK_1, AGATE_1, ARST_O, ARST_1,...

14.6.2 clocked_by=

The attribute clocked_by= allows the user to assert which clock a reset, inout, or value module
argument is associated with, to specify that the argument has no_clock, or to associate the argument
with the default_clock. If the clocked_by= attribute is not provided, the default clock will be
used for inout and value arguments; the clock associated with a reset argument is dervied from where
the reset is connected.

Examples:

module mkMod (Clock c2, (* clocked_by="c2" *) Bool b,
ModIfc ifc);
module mkMod (Clock c2, (* clocked_by="default_clock" *) Bool b,
ModIfc ifc);
module mkMod (Clock c2, (* clocked_by="c2" *) Reset rstln,
(* clocked_by="default_clock" *) Inout g_inout,
(* clocked_by="c2" *) Bool b,
ModIfc ifc);

To specify that an argument is not associated with any clock domain, the clock no_clock is used.
Example:

module mkMod (Clock c2, (* clocked_by="no_clock" *) Bool D,
ModIfc ifc);
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14.6.3 reset_by=

The attribute reset_by= allows the user to assert which reset an inout or value module argument is
associated with, to specify that the argument has no_reset, or to associate the argument with the
default_reset. If the reset_by= attribute is not provided, the default reset will be used.

Examples:

module mkMod (Reset r2, (* reset_by="r2" %) Bool b,
ModIfc ifc);

module mkMod (Reset r2, (* reset_by="default_reset" *) Inout g_inout,
ModIfc ifc);

To specify that the port is not associated with any reset, no_reset is used. Example:

module mkMod (Reset r2, (* reset_by="no_reset" *) Bool b,
ModIfc ifc);

14.6.4 port=

The attribute port= allows renaming of value module arguments. These are port-like arguments
that are not clocks, resets or parameters. It provides the full name of the port generated for the
argument. This is the same attribute as the port= attribute in Section 14.2.1, as applied to module
arguments instead of interface methods.

module mkMod (a_type initValue, (* port="B" *) Bool b, ModIfc ifc);

module mkMod ((* port="PBUS" *) Inout#(Bit#(32)) pbus, ModIfc ifc);

14.6.5 parameter=

The attribute parameter= allows renaming of parameters in the generated RTL. This is similar to
the port= attribute, except that the parameter= attribute can only be used for parameters in the
moduleFormalParams list. More detail on module parameters can be found in Section 5.3. The
name provided in the parameter= attribute statement is the name generated for the parameter in
the RTL.

Example:

module mkMod #((* parameter="DATA_WIDTH" *) parameter Int#(8) width)
( ModIfc ifc );

14.7 Documentation attributes

A BSV design can specify comments to be included in the generated Verilog by use of the doc
attribute.

Top-level
Attribute name | Section module Submodule rule rules
definitions | instantiations | definitions | expressions

’ doc= \ 14.7 \ vV \ N \ N \ vV ‘
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Example:
(* doc = "This is a user-provided comment" *)
To provide a multi-line comment, either include a \n character:
(* doc = "This is one line\nAnd this is another" x*)

Or provide several instances of the doc attribute:

(* doc = "This is one line" %)
(* doc = "And this is another" *)
Or:
(* doc = "This is one line",
doc = "And this is another" x*)

Multiple doc attributes will appear together in the order that they are given. doc attributes can be
added to modules, module instantiations, and rules, as described in the following sections.

14.7.1 Modules

The Verilog file that is generated for a synthesized BSV module contains a header comment prior
to the Verilog module definition. A designer can include additional comments between this header
and the module by attaching a doc attribute to the module being synthesized. If the module is not
synthesized, the doc attributes are ignored.

Example:
(* synthesize *)
(* doc = "This is important information about the following module" *)

module mkMod (IFC);

endmodule

14.7.2 Module instantiation

In generated Verilog, a designer might want to include a comment on submodule instantiations,
to document something about that submodule. This can be achieved with a doc attribute on the
corresponding BSV module. There are three ways to express instantiation in BSV syntax, and the
doc attribute can be attached to all three.

(* doc = "This submodule does something" *)
FIFO#(Bool) f();
mkFIFO the_f(f);

(* doc = "This submodule does something else" *)
Server srv <- mkServer;

Client c;

(* doc = "This submodule does a third thing" *)
c <- mkClient;
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The syntax also works if the type of the module interface is given with let, a variable, or the current
module type. Example:

(* doc = "This submodule does something else" *)
let srv <- mkServer;

If the submodule being instantiated is a separately synthesized module or primitive, then its corre-
sponding Verilog instantiation will be preceded by the comments. Example:

// submodule the_f

// This submodule does something
wire the_f$CLR, the_f$DEQ, the_f$ENQ;
FIF02 #(.width(1)) the_f(...);

If the submodule is not separately synthesized, then there is no place in the Verilog module to attach
the comment. Instead, the comment is included in the header at the beginning of the module.
For example, assume that the module the_sub was instantiated inside mkTop with a user-provided
comment but was not separately synthesized. The generated Verilog would include these lines:

/...

// Comments on the inlined module ‘the_sub’:
// This is the submodule

//

module mkTop(...);

The doc attribute can be attached to submodule instantiations inside functions and for-loops.

If several submodules are inlined and their comments carry to the top-module’s header comment, all
of their comments are printed. To save space, if the comments on several modules are the same, the
comment is only displayed once. This can occur, for instance, with doc attributes on instantiations
inside for-loops. For example:

// Comments on the inlined modules ‘the_sub_1¢, ‘the_sub_2°¢,
// ‘the_sub_3°:
//

If the doc attribute is attached to a register instantiation and the register is inlined (as is the default),
the Verilog comment is included with the declaration of the register signals. Example:

// register the_r

// This is a register

reg the_r;

wire the_r$D_IN, the_r$EN;

If the doc attribute is attached to an RWire instantiation, and the wire instantiation is inlined (as
is the default), then the comment is carried to the top-module’s header comment.

If the doc attribute is attached to a probe instantiation, the comment appears in the Verilog above
the declaration of the probe signals. Since the probe signals are declared as a group, the comments
are listed at the start of the group. Example:

// probes

//

// Comments for probe ‘the_r’:
//  This is a probe

//

wire the_s$PROBE;

wire the_r$PROBE;
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14.7.3 Rules

In generated Verilog, a designer might want to include a comment on rule scheduling signals (such as
CAN_FIRE_ and WILL_FIRE_ signals), to say something about the actions that are performed when
that rule is executed. This can be achieved with a doc attribute attached to a BSV rule declaration
or rules expression.

The doc attribute can be attached to any rule..endrule or rules...endrules statement. Exam-
ple:

(* doc = "This rule is important" *)
rule do_something (b);

x <= Ix;
endrule

If any scheduling signals for the rule are explicit in the Verilog output, their definition will be
preceded by the comment. Example:

// rule RL_do_something

//  This rule is important

assign CAN_FIRE_RL_do_something = b ;

assign WILL_FIRE_RL_do_something = CAN_FIRE_RL_do_something ;

If the signals have been inlined or otherwise optimized away and thus do not appear in the Verilog,
then there is no place to attach the comments. In that case, the comments are carried to the top
module’s header. Example:

// ...
// Comments on the inlined rule ‘RL_do_something’:
//  This rule is important

//
module mkTop(...);

The designer can ensure that the signals will exist in the Verilog by using an appropriate compiler
flag, the -keep-fires flag which is documented in the Bluespec Compiler (BSC) User Guide.

The doc attribute can be attached to any rule..endrule expression, such as inside a function or
inside a for-loop.

As with comments on submodules, if the comments on several rules are the same, and those comments
are carried to the top-level module header, the comment is only displayed once.

/...

// Comments on the inlined rules ‘RL_do_something 2’, ‘RL_do_something_1’,
// ‘RL_do_something’:

//  This rule is important

//

module mkTop(...);

15 Embedding RTL in a BSV design

This section describes how to embed existing RTL modules, Verilog or VHDL, in a BSV module.
The import "BVI" statement is used to utilize existing components, utilize components generated by
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other tools, or to define a custom set of primitives. One example is the definition of BSV primitives
(registers, FIFOs, etc.), which are implemented through import of Verilog modules. The import
"BVI" statement creates a BSV wrapper around the RTL module so that it looks like a BSV module.
Instead of ports, the wrapped module has methods and interfaces.

The import "BVI" statement can be used to wrap Verilog or VHDL modules. Throughout this
section Verilog will be used to refer to either Verilog or VHDL. (One limitatation for VHDL is that
BSV does not support two dimensional ports.)

externModuleImport ::= import "BVI" [ identifier = | moduleProto
{ moduleStmt }
{ importBVIStmt }
endmodule [ : identifier |

The body consists of a sequence of importBVIStmts:

importBVIStmt == parameterBVIStmt
| method BVIStmt

| portBVIStmt

| inputClockBVIStmt

| default ClockBVIStmt
| outputClockBVIStmt
| inputResetBVIStmt

| defaultResetBVIStmt
| noResetBVIStmt

| outputResetBVIStmit
| ancestorBVIStmt

| sameFamilyBVIStmt
| scheduleBVIStmt

| pathBVIStmt

| interfaceBVIStmt

| inoutBVIStmt

The optional identifier immediately following the "BVI" is the name of the Verilog module to be
imported. This will usually be found in a Verilog file of the same name (identifier.v). If this identifier
is excluded, it is assumed that the Verilog module name is the same as the BSV name of the module.

The moduleProto is the first line in the module definition as described in Section 5.3.

The BSV wrapper returns an interface. All arguments and return values must be in the Bits class
or be of type Clock, Reset, Inout, or a subinterface which meets these requirements. Note that the
BSV module’s parameters have no inherent relationship to the Verilog module’s parameters. The
BSV wrapper is used to connect the Verilog ports to the BSV parameters, performing any data
conversion, such as packs or unpacks, as necessary.

Example of the header of a BVI import statement:
import "BVI" RWire =

module RWire (VRWire#(a))
provisos (Bits#(a,sa));

endmodule: vMkRWire
Since the Verilog module’s name matches the BSV name, the header could be also written as:
import "BVI"
module RWire (VRWire#(a))

provisos (Bits#(a,sa));

endmodule: vMkRWire
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The module body may contain both moduleStmts and importBVIStmts. Typically when including a
Verilog module, the only module statements would be a few local definitions. However, all module
statements, except for method definitions, subinterface definitions, and return statements, are valid,
though most are rarely used in this instance. Only the statements specific to importBVIStmt bodies
are described in this section.

The importBVIStmts must occur at the end of the body, after the moduleStmts. They may be
written in any order.

The following is an example of embedding a Verilog SRAM model in BSV. The Verilog file is shown
after the BSV wrapper.

import "BVI" mkVerilog_ SRAM_model =
module mkSRAM #(String filename) (SRAM_Ifc #(addr_t, data_t))
provisos(Bits#(addr_t, addr_width),
Bits#(data_t, data_width));
parameter FILENAME = filename;
parameter ADDRESS_WIDTH = valueOf (addr_width);
parameter DATA_WIDTH valueof (data_width);
method request (v_in_address, v_in_data, v_in_write_not_read)
enable (v_in_enable);
method v_out_data read_response;
default_clock clk(clk, (*unused*) clk_gate);
default_reset no_reset;
schedule (read_response) SB (request);
endmodule

This is the Verilog module being wrapped in the above BVI import statement.

module mkVerilog_SRAM_model (clk,

v_in_address, v_in_data,
v_in_write_not_read,
v_in_enable,

v_out_data) ;
"Verilog_SRAM_model.data";
10;

8;

(1 << ADDRESS_WIDTH) ;

parameter FILENAME
parameter ADDRESS_WIDTH
parameter DATA_WIDTH
parameter NWORDS

input clk;

input [ADDRESS_WIDTH-1:0] v_in_address;

input [DATA_WIDTH-1:0] v_in_data;

input v_in_write_not_read;

input v_in_enable;

output [DATA_WIDTH-1:0] v_out_data;
endmodule

15.1 Parameter

The parameter statement specifies the parameter values which will be used by the Verilog module.

parameterBVIStmt  ::= parameter identifier = expression ;
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The value of expression is supplied to the Verilog module as the parameter named identifier. The
expression must be a compile-time constant. The valid types for parameters are String, Integer
and Bit#(n). Example:

import "BVI" ClockGen =
module vAbsoluteClock#(Integer start, Integer period)
( ClockGenIfc );
let halfPeriod = period/2 ;
parameter initDelay = start; //the parameters start,
parameter viWidth = halfPeriod ; //halfPeriod and period
parameter v2Width = period - halfPeriod ; //must be compile-time constants

éﬁémodule
15.2 Method

The method statement is used to connect methods in a BSV interface to the appropriate Verilog
wires. The syntax imitates a function prototype in that it doesn’t define, but only declares. In the
case of the method statement, instead of declaring types, it declares ports.

methodBVIStmt = method [ portld | identifer [ ( [ portld { , portld }]) ]
[ enable (portld ) | [ ready ( portld) ]
[ clocked_by ( clockld) ] [ reset_by ( resetld) | ;

The first portld is the output port for the method, and is only used when the method has a return
value. The identifier is the method’s name according to the BSV interface definition. The paren-
thesized list is the input port names corresponding to the method’s arguments, if there are any.
There may follow up to four optional clauses (in any order): enable (for the enable input port if the
method has an Action component), ready (for the ready output port), clocked_by (to indicate the
clock of the method, otherwise the default clock will be assumed) and reset_by (for the associated
reset signal, otherwise the default reset will be assumed). If no ready port is given, the constant
value 1 is used meaning the method is always ready. The names no_clock and no_reset can be used
in clocked_by and reset_by clauses indicating that there is no associated clock and no associated
reset, respectively.

If the input port list is empty and none of the optional clauses are specified, the list and its paren-
theses may be omitted. If any of the optional clauses are specified, the empty list () must be shown.
Example:

method CLOCKREADY_OUT clockready() clocked_by(clk);
If there was no clocked_by statement, the following would be allowed:
method CLOCKREADY_OUT clockready;

The BSV types of all the method’s arguments and its result (if any) must all be in the Bits typeclass.

Any of the port names may have an attribute attached to them. The allowable attributes are reg,
const, unused, and inhigh. The attributes are translated into port descriptions. Not all port
attributes are allowed on all ports.

For the output ports, the ready port and the method return value, the properties reg and const
are allowed. The reg attribute specifies that the value is coming directly from a register with no
intermediate logic. The const attribute indicates that the value is hardwired to a constant value.
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For the input ports, the input arguments and the enable port, reg and unused are allowed. In this
context reg specifies that the value is immediately written to a register without intermediate logic.
The attribute unused indicates that the port is not used inside the module; its value is ignored.

Additionally, for the method enable, there is the inhigh property, which indicates that the method
is always_enabled, as described in Section 14.2.2. Inside the module, the value of the enable is
assumed to be 1 and, as a result, the port doesn’t exist. The user still gives a name for the port as
a placeholder. Note that only Action or ActionValue methods can have an enable signal.

The following code fragment shows an attribute on a method enable:
method load(flopA, flopB) enable((*inhigh*) EN);

The output ports may be shared across methods (and ready signals).

15.3 Port

The port statement declares an input port, which is not part of a method, along with the value to
be passed to the port. While parameters must be compile-time constants, ports can be dynamic.
The port statements are analogous to arguments to a BSV module, but are rarely needed, since
BSV style is to interact and pass arguments through methods.

portBVIStmt = port identifier | clocked_by ( clockld ) |
[ reset_by ( resetld ) | = expression ;

The defining operator <- or = may be used.

The value of ezpression is supplied to the Verilog port named identifier. The type of expression
must be in the Bits typeclass. The expression may be dynamic (e.g. the _read method of a register
instantiated elsewhere in the module body), which differentiates it from a parameter statement.
The bsc compiler cannot check that the import has specified the same size as declared in the Verilog
module. If the width of the value is not the same as that expected by the Verilog module, Verilog
will truncate or zero-extend the value to fit.

Example - Setting port widths to a specific width:

// Tie off the test ports

Bit#(1) v = 0 ;

port TM = v ; // This ties off the port TM to a 1 bit wide O
Bit#(w) z = 0 ;

port TD = z ; // This ties off the port TD to w bit wide O

The clocked_by clause is used to specify the clock domain that the port is associated with, named
by clockld. Any clock in the domain may be used. The values no_clock and default_clock, as
described in Section 15.5, may be used. If the clause is omitted, the associated clock is the default
clock.

Example - BVI import statement including port statements
port BUS_ID clocked_by (clk2) = busId ;

The reset_by clause is used to specify the reset the port is associated with, named by resetld. Any
reset in the domain may be used. The values no_reset and default_reset, as described in Section
15.8 may be used. If the clause is omitted, the associated reset is the default reset.
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15.4 Input clock

The input_clock statement specifies how an incoming clock to a module is connected. Typically,
there are two ports, the oscillator and the gate, though the connection may use fewer ports.

inputClockBVIStmt  ::= input_clock [ identifier | ( [ portsDef | ) = expression ;
portsDef n= portld | , [ attributelnstances | portld ]
portld = identifier

The defining operator = or <- may be used.

The identifier is the clock name which may be used elsewhere in the import to associate the clock with
resets and methods via a clocked_by clause, as described in Sections 15.7 and 15.2. The portsDef
statement describes the ports that define the clock. The clock value which is being connected is
given by expression.

If the expression is an identifier being assigned with =, and the user wishes this to be the name of
the clock, then the identifier of the clock can be omitted and the expression will be assumed to be
the name. The clock name can be omitted in other circumstances, but then no name is associated
with the clock. An unamed clock cannot be referred to elsewhere, such as in a method or reset or
other statement. Example:

input_clock (0SC, GATE) = clk;
is equivalent to:
input_clock clk (0SC, GATE) = clk;

The user may leave off the gate (one port) or the gate and the oscillator (no ports). It is the
designer’s responsibility to ensure that not connecting ports does not lead to incorrect behavior. For
example, if the Verilog module is purely combinational, there is no requirement to connect a clock,
though there may still be a need to associate its methods with a clock to ensure that they are in
the correct clock domain. In this case, the portsDef would be omitted. Example of an input clock
without any connection to the Verilog ports:

input_clock ddClk() = dClk;

If the clock port is specified and the gate port is to be unconnected, an attribute, either unused
or inhigh, describing the gate port should be specified. The attribute unused indicates that the
submodule doesn’t care what the unconnected gate is, while inhigh specifies the gate is assumed in
the module to be logical 1. It is an error if a clock with a gate that is not logical 1 is connected to
an input clock with an inhigh attribute. The default when a gate port is not specified is inhigh,
though it is recommended style that the designer specify the attribute explicitly.

To add an attribute, the usual attribute syntax, (* attribute_name *) immediately preceding the
object of the attribute, is used. For example, if a Verilog module has no internal transitions and
responds only to method calls, it might be unnecessary to connect the gating signal, as the implicit
condition mechanism will ensure that no method is invoked if its clock is off. So the second portld,
for the gate port, would be marked unused.

input_clock ddClk (0SC, (*unused*) UNUSED) = dClk;

The options for specifying the clock ports in the portsDef clause are:
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) // there are no Verilog ports

(0SC, GATE) // both an oscillator port and a gate port are specified
(0SC, (*unused*)GATE) // there is no gate port and it’s unused

(0SC, (*inhigh*)GATE) // there is no gate port and it’s required to be logical 1
(0SC) // same as (0SC, (xinhighx) GATE)

In an input_clock statement, it is an error if both the port names and the input clock name are
omitted, as the clock is then unusable.

15.5 Default clock

In BSV, each module has an implicit clock (the current clock) which is used to clock all instantiated
submodules unless otherwise specified with a clocked_by clause. Other clocks to submodules must
be explicitly passed as input arguments.

Every BVI import module must declare which input clock (if any) is the default clock. This default
clock is the implicit clock provided by the parent module, or explicitly given via a clocked_by
clause. The default clock is also the clock associated with methods and resets in the BVI import
when no clocked_by clause is specified.

The simplest definition for the default clock is:
defaultClockBVIStmt ::= default_clock identifier ;
where the identifier specifies the name of an input clock which is designated as the default clock.

The default clock may be unused or not connected to any ports, but it must still be declared.
Example:

default_clock no_clock;

This statement indicates the implicit clock from the parent module is ignored (and not connected).
Consequently, the default clock for methods and resets becomes no_clock, meaning there is no
associated clock.

To save typing, you can merge the default_clock and input_clock statements into a single line:
defaultClockBVIStmt ::= default_clock [ identifier | [ ( portsDef ) | [ = expression | ;
The defining operator = or <- may be used.

This is precisely equivalent to defining an input clock and then declaring that clock to be the default
clock. Example:

default_clock clk_src (0SC, GATE) = sClkIn;
is equivalent to:

input_clock clk_src (0SC, GATE) = sClkIn;
default_clock clk_src;

If omitted, the = expression in the default_clock statement defaults to <- exposeCurrentClock.
Example:

default_clock xclk (0SC, GATE);

is equivalent to:
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default_clock xclk (0SC, GATE) <- exposeCurrentClock;

If the portnames are excluded, the names default to CLK, CLK_GATE. Example:
default_clock xclk = clk;

is equivalent to:
default_clock xclk (CLK, CLK_GATE) = clk;

Alternately, if the ezpression is an identifier being assigned with =, and the user wishes this to be
the name of the default clock, then he can leave off the name of the default clock and expression
will be assumed to be the name. Example:

default_clock (0SC, GATE) = clk;
is equivalent to:
default_clock clk (0SC, GATE) = clk;

If an expression is provided, both the ports and the name cannot be omitted.

However, omitting the entire statement is equivalent to:
default_clock (CLK, CLK_GATE) <- exposeCurrentClock;

specifying that the current clock is to be associated with all methods which do not specify otherwise.

15.6 Output clock

The output_clock statement gives the port connections for a clock provided in the module’s inter-
face.

outputClockBVIStmt ::= output_clock identifier ([ portsDef |) ;

The identifier defines the name of the output clock, which must match a clock declared in the
module’s interface. Example:

interface ClockGenIfc;
interface Clock gen_clk;
endinterface

import "BVI" ClockGen =
module vMkAbsoluteClock #( Integer start,
Integer period

) ( ClockGenIfc );

output_clock gen_clk(CLK_0OUT);
endmodule

It is an error for the same identifier to be declared by more than one output_clock statement.
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15.7 Input reset

The input_reset statement defines how an incoming reset to the module is connected. Typically
there is one port. BSV assumes that the reset is inverted (the reset is asserted with the value 0).

inputResetBVIStmt = input_reset [ identifier | [ ( portld ) ] [ clocked_by ( clockId ) |
= expression ;

portld = identifier

clockld = identifier

where the = may be replaced by <-.

The reset given by expression is to be connected to the Verilog port specified by portld. The identifier
is the name of the reset and may be used elsewhere in the import to associate the reset with methods
via a reset_by clause.

The clocked_by clause is used to specify the clock domain that the reset is associated with, named
by clockld. Any clock in the domain may be used. If the clause is omitted, the associated clock is
the default clock. Example:

input_reset rst(sRST_N) = sRstln;
is equivalent to:
input_reset rst(sRST_N) clocked_by(clk) = sRstln;

where clk is the identifier named in the default_clock statement.

If the user doesn’t care which clock domain is associated with the reset, no_clock may be used. In
this case the compiler will not check that the connected reset is associated with the correct domain.
Example

input_reset rst(sRST_N) clocked_by(no_clock) = sRstln;

If the ezpression is an identifier being assigned with =, and the user wishes this to be the name of the
reset, then he can leave off the identifier of the reset and the expression will be assumed to be the
name. The reset name can be left off in other circumstances, but then no name is associated with
the reset. An unamed reset cannot be referred to elsewhere, such as in a method or other statement.

In the cases where a parent module needs to associate a reset with methods, but the reset is not
used internally, the statement may contain a name, but not specify a port. In this case, there is no
port expected in the Verilog module. Example:

input_reset rst() clocked_by (clk_src) = sRstln ;
Example of a BVI import statement containing an input_reset statement:

import "BVI" SyncReset =
module vSyncReset#(Integer stages ) ( Reset rstIn, ResetGenIfc rstOut ) ;

// we don’t care what the clock is of the input reset
input_reset rst(IN_RST_N) clocked_by (no_clock) = rstln ;

endmodule
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15.8 Default reset

In BSV, when you define a module, it has an implicit reset (the current reset) which is used to
reset all instantiated submodules (unless otherwise specifed via a reset_by clause). Other resets to
submodules must be explicitly passed as input arguments.

Every BVI import module must declare which reset, if any, is the default reset. The default reset
is the implicit reset provided by the parent module (or explicitly given with a reset_by). The
default reset is also the reset associated with methods in the BVI import when no reset_by clause
is specified.

The simplest definition for the default reset is:
defaultResetBVIStmt ::= default_reset identifier ;
where identifier specifies the name of an input reset which is designated as the default reset.

The reset may be unused or not connected to a port, but it must still be declared. Example:
default_reset no_reset;

The keyword default_reset may be omitted when declaring an unused reset. The above statement
can thus be written as:

no_reset; // the default_reset keyword can be omitted
This statement declares that the implicit reset from the parent module is ignored (and not con-

nected). In this case, the default reset for methods becomes no_reset, meaning there is no associated
reset.

To save typing, you can merge the default_reset and input_reset statements into a single line:

defaultResetBVIStmt = default_reset [ identifier | [ ( portld ) ] [ clocked_by ( clockId ) |
[ = expression | ;

The defining operator = or <- may be used.

This is precisely equivalent to defining an input reset and then declaring that reset to be the default.
Example:

default_reset rst (RST_N) clocked_by (clk) = sRstln;
is equivalent to:

input_reset rst (RST_N) clocked_by (clk) = sRstln;
default_reset rst;

If omitted, = expression in the default_reset statement defaults to <- exposeCurrentReset.
Example:

default_reset rst (RST_N);
is equivalent to
default_reset rst (RST_N) <- exposeCurrentReset;

The clocked_by clause is optional; if omitted, the reset is clocked by the default clock. Example:
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default_reset rst (sRST_N) = sRstIn;
is equivalent to
default_reset rst (sRST_N) clocked_by(clk) = sRstln;

where clk is the default_clock.

If no_clock is specified, the reset is not associated with any clock. Example:
input_reset rst (sRST_N) clocked_by(no_clock) = sRstln;

If the portld is excluded, the reset port name defaults to RST_N. Example:
default_reset rstIn = rst;

is equivalent to:
default_reset rstIn (RST_N) = rst;

Alternatively, if the expression is an identifier being assigned with =, and the user wishes this to be
the name of the default reset, then he can leave off the name of the default reset and expression will
be assumed to be the name. Example:

default_reset (rstIn) = rst;
is equivalent to:
default_reset rst (rstIn) = rst;

Both the ports and the name cannot be omitted.

However, omitting the entire statement is equivalent to:
default_reset (RST_N) <- exposeCurrentReset;

specifying that the current reset is to be associated with all methods which do not specify otherwise.

15.9 Output reset
The output_reset statement gives the port connections for a reset provided in the module’s inter-
face.

outputResetBVIStmt ::= output_reset identifier [ ( portld ) ][ clocked_by ( clockld ) ];
The identifier defines the name of the output reset, which must match a reset declared in the

module’s interface. Example:

interface ResetGenlfc;
interface Reset gen_rst;
endinterface

import "BVI" SyncReset =
module vSyncReset#(Integer stages ) ( Reset rstIn, ResetGenIfc rstOut ) ;

output_reset gen_rst(0UT_RST_N) clocked_by(clk) ;
endmodule

It is an error for the same identifier to be declared by more than one output_reset statement.
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15.10 Ancestor, same family

There are two statements for specifying the relationship between clocks: ancestor and same_family.
ancestorBVIStmt ::= ancestor ( clockld , clockld ) ;

This statement indicates that the second named clock is an ancestor of the first named clock. To
say that clockl is an ancestor of clock2, means that clock?2 is a gated version of clockl. This
is written as:

ancestor (clock2, clockl);

For clocks which do not have an ancestor relationship, but do share a common ancestor, we have:
sameFamilyBVIStmt ::= same_family ( clockld , clockld ) ;

This statement indicates that the clocks specified by the clocklds are in the same family (same clock
domain). When two clocks are in the same family, they have the same oscillator with a different
gate. To be in the same family, one does not have to be a gated version of the other, instead they
may be gated versions of a common ancestor. Note that ancestor implies same_family, which then
need not be explicitly stated. For example, a module which gates an input clock:

input_clock clk_in(CLK_IN, CLK_GATE_IN) = clk_in ;
output_clock new_clk(CLK_OUT, CLK_GATE_OUT);
ancestor(new_clk, clk_in);

15.11 Schedule

schedule BVIStmt ::= schedule ( identifier { , identifier } ) operatorld
( identifier { , identifier } );

operatorld = CF
| SB
| SBR
| ¢

The schedule statement specifies the scheduling constraints between methods in an imported mod-
ule. The operators relate two sets of methods; the specified relation is understood to hold for each
pair of an element of the first set and an element of the second set. The order of the methods in the
lists is unimportant and the parentheses may be omitted if there is only one name in the set.

The meanings of the operators are:

CF conflict-free

SB sequences before

SBR sequences before, with range conflict (that is, not composable in parallel)
C conflicts

It is an error to specify two relationships for the same pair of methods. It is an error to specify a
scheduling annotation other than CF for methods clocked by unrelated clocks. For such methods,
CF is the default; for methods clocked by related clocks the default is C. The compiler generates a
warning if an annotation between a method pair is missing. Example:

import "BVI" FIF02 =
module vFIFOF2_MC ( Clock sClkIn, Reset sRstln,
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Clock dClkIn, Reset dRstIn,
Clock realClock, Reset realReset,
FIFOF_MC#(a) ifc )

provisos (Bits#(a,sa));

method enq( D_IN ) enable(ENQ) clocked_by( clk_src ) reset_by( srst )

method FULL_N  notFull clocked_by( clk_src ) reset_by( srst )
method deq() enable (DEQ) clocked_by( clk_dst ) reset_by( drst )
method D_OUT first clocked_by( clk_dst ) reset_by( drst )
method EMPTY_N notEmpty clocked_by( clk_dst ) reset_by( drst )

schedule (enq, notFull) CF (deq, first, notEmpty) ;
schedule (first, notEmpty) CF (first, notEmpty) ;
schedule (notFull) CF (notFull) ;
// CF: conflict free - methods in the first list can be scheduled
// in any order or any number of times, with the methods in the
// second list - there is no conflict between the methods.
schedule first SB deq ;
schedule (notEmpty) SB (deq) ;
schedule (notFull) SB (enq) ;
// SB indicates the order in which the methods must be scheduled
// the methods in the first list must occur (be scheduled) before
// the methods in the second list
// SB allows these methods to be called from one rule but the
// SBR relationship does not.
schedule (enq) C (enq) ;
schedule (deq) C (deq) ;
// C: conflicts - methods in the first list conflict with the
// methods in the second - they cannot be called in the same clock cycle.
// if a method conflicts with itself, (enq and deq), it
// cannot be called more than once in a clock cycle
endmodule

15.12 Path

The path statement indicates that there is a combinational path from the first port to the second
port.

pathBVIStmt = path ( portld, portld ) ;

It is an error to specify a path between ports that are connected to methods clocked by unrelated
clocks. This would be, by definition, an unsafe clock domain crossing. Note that the compiler
assumes that there will be a path from a value or ActionValue method’s input parameters to its
result, so this need not be specified explicitly.

The paths defined by the path statement are used in scheduling. A path may impact rule urgency
by implying an order in how the methods are scheduled. The path is also used in checking for
combinational cycles in a design. The compiler will report an error if it detects a cycle in a design.
In the following example, there is a path declared between WSET and WHAS, as shown in figure 9.

import "BVI" RWireO =
module vMkRWireO (VRWireO);

method wset() enable(WSET) ;
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wseT | en WHAS

Path describes
this connection

RWireO

Figure 9: Path in the RWire0 Verilog module between WSET and WHAS ports

method WHAS whas ;
schedule whas CF whas ;
schedule wset SB whas ;
path (WSET, WHAS) ;
endmodule: vMkRWireO

15.13 Interface

interface BVIStmt = interface typeDefType ;
{ interfaceBVIMembDecl }
endinterface [ : typelde ]
interface BVIMembDect:= method BVIStmt
| interfaceBVIStmt ;

An interface statement can contain two types of statements: method statements and subinterface
declarations. The interface statement in BVI import is the same as any other interface statement
(Section 5.2) with one difference: the method statements within the interface are BVI method
statements (methodBVIStmt 15.2).

Example:

import "BVI" BRAM2 =
module vSyncBRAM2#(Integer memSize, Bool hasOutputRegister,
Clock clkA, Reset rstNA, Clock clkB, Reset rstNB
) (BRAM_DUAL_PORT#(addr, data))
provisos(Bits#(addr, addr_sz),
Bits#(data, data_sz));

interface BRAM_PORT a;
method put(WEA, (*regx)ADDRA, (*reg*)DIA) enable(ENA) clocked_by(clkA) reset_by(rsth);
method DOA read() clocked_by(clkA) reset_by(rsth);

endinterface: a

interface BRAM_PORT b;
method put(WEB, (xreg+*)ADDRB, (*regx)DIB) enable(ENB) clocked_by(clkB) reset_by(rstB);
method DOB read() clocked_by(clkB) reset_by(rstB);
endinterface: b
endmodule: vSyncBRAM2

Since a BVI wrapper module can only provide a single interface (BRAM_DUAL_PORT in this example),
to provide multiple interfaces you have to create an interface hierarchy using interface statements.

The interface hierarchy provided in this example is:
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interface BRAM_DUAL_PORT#(type addr, type data);
interface BRAM_PORT#(addr, data) a;
interface BRAM_PORT#(addr, data) b;
endinterface: BRAM_DUAL_PORT

where the subinterfaces, a and b, are defined as interface statements in the body of the import
"BVI" statement.

15.14 Inout

The following statements describe how to pass an inout port from a wrapped Verilog module through
a BSV module. These ports are represented in BSV by the type Inout. There are two ways that
an Inout can appear in BSV modules: as an argument to the module or as a subinterface of the
interface provided by the module. There are, therefore, two ways to declare an Inout port in a
BVI import: the statement inout declares an argument of the current module; and the statement
ifc_inout declares a subinterface of the provided interface.

inoutBVIStmt = inout portld [ clocked_by ( clockId ) |
[ reset_by ( resetld ) | = expression ;

The value of portld is the Verilog name of the inout port and ezxpression is the name of an argument
from the module.

inoutBVIStmt = ifc_inout identifier (inoutld ) [ clocked_by ( clockld ) ]
[ reset_by ( resetld ) ] ;

Here, the identifier is the name of the subinterface of the provided interface and portld is, again,
the Verilog name of the inout port.

The clock and reset associated with the Inout are assumed to be the default clock and default reset
unless explicitly specified.

Example:

interface Q;
interface Inout#(Bit#(13)) q_inout;
interface Clock c_clock;
endinterface

import "BVI" Foo =

module mkFoo#(Bool b) (Inout#(int) x, Q ifc);
default_clock ();
no_reset;

inout iport = x;
ifc_inout q_inout(qgport);
output_clock c_clock(clockport);

endmodule

The wrapped Verilog module is:

module Foo (iport, clockport, gport);
input cccport;
inout [31:0] iport;
inout [12:0] qport;

endmodule
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16 Embedding C in a BSV Design

This section describes how to declare a BSV function that is provided as a C function. This is used
when there are existing C functions which the designer would like to include in a BSV module. Using
the importBDPI syntax, the user can specify that the implementation of a BSV function is provided
as a C function.

externCImport = import "BDPI" [ identifier = | function type
identifier ( [ CFuncArgs | ) [ provisos | ;

CFuncArgs = CFuncArg { , CFuncArg }
CFuncArg = type [ identifier ]

This defines a function identifier in the BSV source code which is implemented by a C function of
the same name. A different link name (C name) can be specified immediately after the "BDPI",
using an optional [identifier = |. The link name is not bound by BSV case-restrictions on identifiers
and may start with a capital letter.

Example of an import statement where the C name matches the BSV name:

// the C function and the BSV function are both named checksum
import "BDPI" function Bit#(32) checksum (Bit#(n), Bit#(32));

Example of an import statement where the C name does not match the BSV name:

// the C function name is checksum
// the BSV function name is checksum_raw
import "BDPI" checksum = function Bit#(32) checksum_raw (Bit#(n), Bit#(32));

The first type specifies the return type of the function. The optional CFuncArgs specify the argu-
ments of the function, along with an optional identifier to name the arguments.

For instance, in the above checksum example, you might want to name the arguments to indicate
that the first argument is the input value and the second argument is the size of the input value.

import "BDPI" function Bit#(32) checksum (Bit#(n) input_val, Bit#(32) input_size);

16.1 Argument Types

The types for the arguments and return value are BSV types. The following table shows the corre-
lation from BSV types to C types.

’ BSV Type \ C Type ‘
String char*
Bit#(0) - Bit#(8) unsigned char
Bit#(9) - Bit#(32) unsigned int
Bit#(33) - Bit#(64) unsigned long long
Bit#(65) - unsigned intx*
Bit#(n) unsigned int*
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The tmportBDPI syntax provides the ability to import simple C functions that the user may already
have. A C function with an argument of type char or unsigned char should be imported as a BSV
function with an argument of type Bit#(8). For int or unsigned int, use Bit#(32). For long
long or unsigned long long, use Bit#(64). While BSV creates unsigned values, they can be
passed to a C function which will treat the value as signed. This can be reflected in BSV with
Int#(8), Int#(32), Int#(64), etc.

The user may also import new C functions written to match a given BSV function type. For instance,
a function on bit-vectors of size 17 (that is, Bit#(17)) would expect to pass this value as the C type
unsigned int and the C function should be aware that only the first 17 bits of the value are valid
data.

Wide data Bit vectors of size 65 or greater are passed by reference, as type unsigned intx. This
is a pointer to an array of 32-bit words, where bit 0 of the BSV vector is bit 0 of the first word in
the array, and bit 32 of the BSV vector is bit 0 of the second word, etc. Note that we only pass the
pointer; no size value is passed to the C function. This is because the size is fixed and the C function
could have the size hardcoded in it. If the function needs the size as an additional parameter, then
either a C or BSV wrapper is needed. See the examples below.

Polymorphic data As the above table shows, bit vectors of variable size are passed by reference,
as type unsigned int*. As with wide data, this is a pointer to an array of 32-bit words, where bit
0 of the BSV vector is bit 0 of the first word in the array, and bit 32 of the BSV vector is bit 0 of
the second word, etc. No size value is passed to the C function, because the import takes no stance
on how the size should be communicated. The user will need to handle the communication of the
size, typically by adding an additional argument to the import function and using a BSV wrapper
to pass the size via that argument, as follows:

// This function computes a checksum for any size bit-vector
// The second argument is the size of the input bit-vector
import "BDPI" checksum = function Bit#(32) checksum_raw (Bit#(n), Bit#(32));

// This wrapper handles the passing of the size
function Bit#(32) checksum (Bit#(n) vec);

return checksum_raw(vec, fromInteger(valueOf(n)));
endfunction

16.2 Return types

Imported functions can be value functions, Action functions, or ActionValue functions. The ac-
ceptable return types are the same as the acceptable argument types, except that String is not
permitted as a return type.

Imported functions with return values correlate to C functions with return values, except in the
cases of wide and polymorphic data. In those cases, where the BSV type correlates to unsigned
int*, the simulator will allocate space for the return result and pass a pointer to this memory to
the C function. The C function will not be responsible for allocating memory. When the C function
finishes execution, the simulator copies the result in that memory to the simulator state and frees
the memory. By convention, this special argument is the first argument to the C function.

For example, the following BSV import:
import "BDPI" function Bit#(32) f (Bit#(8));

would connect to the following C function:
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unsigned int f (unsigned char x);
While the following BSV import with wide data:

import "BDPI" function Bit#(128) g (Bit#(8));
would connect to the following C function:

void g (unsigned int* resultptr, unsigned char x);

16.3 Implicit pack/unpack

So far we have only mentioned Bit and String types for arguments and return values. Other types
are allowed as arguments and return values, as long as they can be packed into a bit-vector. These
types include Int, UInt, Bool, and Maybe, all of which have an instance in the Bits class.

For example, this is a valid import:
import "BDPI" function Bool my_and (Bool, Bool);
Since a Bool packs to a Bit#(1), it would connect to a C function such as the following:

unsigned char
my_and (unsigned char x, unsigned char y);

In this next example, we have two C functions, signedGT and unsignedGT, both of which implement
a greater-than function, returning a Bool indicating whether x is greater than y.

import "BDPI" function Bool signedGT (Int#(32) x, Int#(32) y);
import "BDPI" function Bool unsignedGT (UInt#(32) x, UInt#(32) y);

Because the function signedGT assumes that the MSB is a sign bit, we use the type-system to make
sure that we only call that function on signed values by specifying that the function only works on
Int#(32). Similarly, we can enforce that unsignedGT is only called on unsigned values, by requiring
its arguments to be of type UInt#(32).

The C functions would be:

unsigned char signedGT (unsigned int x, unsigned int y);
unsigned char unsignedGT (unsigned int x, unsigned int y);

In both cases, the packed value is of type Bit#(32), and so the C function is expected to take the its
arguments as unsigned int. The difference is that the signedGT function will then treat the values
as signed values while the unsignedGT function will treat them as unsigned values. Both functions
return a Bool, which means the C return type is unsigned char.

Argument and return types to imported functions can also be structs, enums, and tagged unions.
The C function will receive the data in bit form and must return values in bit form.

16.4 Other examples

Shared resources In some situations, several imported functions may share access to a resource,
such as memory or the file system. If these functions wish to share file handles, pointers, or other
cookies between each other, they will have to pass the data as a bit-vector, such as unsigned
int/Bit#(32).
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When to use Action components If an imported function has a side effect or if it matters how many
times or in what order the function is called (relative to other calls), then the imported function
should have an Action component in its BSV type. That is, the functions should have a return type
of Action or ActionValue.

Removing indirection for polymorphism within a range A polymorphic type will always become
unsigned int* in the C, even if there is a numeric proviso which restricts the size. Consider the
following import:

import "BDPI" function Bit#(n) f(Bit#(n), Bit#(8)) provisos (Add#(n,j,32));

This is a polymorphic vector, so the conversion rules indicate that it should appear as unsigned
int* in the C. However, the proviso indicates that the value of n can never be greater than 32. To
make the import be a specific size and not a pointer, you could use a wrapper, as in the example
below.

import "BDPI" f = function Bit#(32) f_aux(Bit#(32), Bit#(8));

function Bit#(n) f (Bit#(n) x) provisos (Add#(n,j,32));
return f_aux(extend(x), fromInteger(valueOf(n)));
endfunction
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A Keywords

In general, keywords do not use uppercase letters (the only exception is the keyword valueOf). The
following are the keywords in BSV (and so they cannot be used as identifiers).

Action
ActionValue
BVI

C

CF

E

SB

SBR

action
actionvalue
ancestor
begin

bit

case
clocked_by
default

default_clock
default_reset

dependencies
deriving
determines
e

else

enable

end

enum

export

for
function

if
ifc_inout
import
inout
input_clock
input_reset
instance
interface
let

match
matches
method
module
numeric
output_clock
output_reset
package
parameter
path

port

endaction
endactionvalue

endcase

endfunction

endinstance
endinterface

endmethod
endmodule

endpackage
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provisos
reset_by
return
rule
rules
same_family
schedule
string
struct
tagged
type
typeclass
typedef
union
valueOf
valueof
void
while

endrule
endrules

endtypeclass
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The following are keywords in SystemVerilog (which includes all the keywords in Verilog). Although
most of them are not used in BSV, for compatibility reasons they are not allowed as identifiers in

BSV cither.

alias

always
always_comb
always_£ff
always_latch
and

assert
assert_strobe
assign

assume
automatic
before

begin end
bind

bins

binsof

bit

break

buf

bufifo

bufifi

byte

case endcase
casex

casez

cell

chandle

class endclass
clocking endclocking
cmos

config endconfig
const
constraint
context
continue

cover
covergroup endgroup
coverpoint
cross

deassign
default
defparam
design

disable

dist

do

edge

else

enum

event

expect
export
extends
extern
final
first_match
for
force
foreach
forever
fork
forkjoin
function
generate
genvar
highz0
highz1
if

iff
ifnone

endfunction
endgenerate

ignore_bins
illegal_bins
import
incdir
include
initial
inout

input

inside
instance

int

integer
interface endinterface
intersect
join
join_any
join_none
large
liblist
library
local
localparam
logic
longint
macromodule
matches
medium
modport
module endmodule
nand
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negedge

new

nmos

nor

noshowcancelled

not

notif0

notifl

null

or

output

package endpackage
packed
parameter
pmos
posedge
primitive
priority
program
property
protected
pullo
pulll
pulldown
pullup
pulsestyle_onevent
pulsestyle_ondetect
pure

rand

randc
randcase
randsequence
rcmos

real

realtime

ref

reg

release
repeat

return

rnmos

rpmos

rtran
rtranifQ
rtranifl
scalared
sequence
shortint
shortreal
showcancelled

endprimitive

endprogram
endproperty

endsequence
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signed time var
small timeprecision vectored
solve timeunit virtual
specify endspecify tran void
specparam tranif0 wait
static tranifil wait_order
string tri wand
strong0 trio0 weak0
strongl tril weakl
struct triand while
super trior wildcard
supplyO trireg wire
supplyl type with
table endtable typedef within
tagged union wor
task endtask unique xnor
this unsigned xor
throughout use
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B A Brief History of BH (Bluespec Haskell/Classic) and BSV (Blue-
spec SystemVerilog)

The original research on using rules to specify hardware behavior, and of compiling rules into
synthesizable Verilog was conducted by James Hoe for his Ph.D. thesis [Hoe00] under the supervision
of Prof. Arvind at MIT in the late 1990s.

In 2000, activity moved to Sandburst Corp., a fabless semiconductor startup company based in
Massachusetts, producing enterprise-class and metropolitan-class network router chips. The first
Bluespec language and compiler were designed at Sandburst by Lennart Augustsson, with the assis-
tance of several others including Jacob Schwartz, Mieszko Lis, Joe Stoy, Arvind and Rishiyur Nikhil.
The language was very much Haskell-influenced in its syntax, in its type system, and in its static
elaboration semantics. The compiler itself was written in Haskell. During this period, the language
was used only in-house, principally for hardware-models of Sandburst’s chip architecture.

In 2003, a separate company, Bluespec, Inc., also in Massachusetts, was spun out from Sandburst
Corp. to focus on the Bluespec language and compiler as its central product, targeted at digital
design engineers worldwide. Because of the target audence’s deep familiarity with Hardware Design
Languages (principally Verilog and VHDL), and complete unfamiliarity with Haskell, the syntax
of the Bluespec language was completely redesigned to be as similar as possible to SystemVerilog,
which was just then being defined as an industry standard. Members of Bluespec, Inc. joined the
IEEE SystemVerilog standardization effort, for closer alignment (the “tagged unions” and “pattern-
matching” constructs in the SystemVerilog standard were a Bluespec contribution, inspired directly
by Haskell).

The original Haskell-like syntax (at Sandburst Corp.) and the subsequent SystemVerilog-like syntax
(at Bluespec, Inc.) are merely two different syntaxes for the same language, with the same semantics.
They are simply two alternative parsing front-ends for the common bsc compiler. The original
language is called “Bluespec Classic” or BH (for “Bluespec Haskell”) and the subsequent language
is called BSV (for “Bluespec SystemVerilog”). Both syntaxes continue to be accepted by bsc, and a
single system can mix and match packages, some written in BH and some written in BSV. Almost
all designs from 2005 onwards were done in BSV (with one major exception done in BH), but since
open-sourcing in 2020, BH is once again seeing increased use.

From about 2005 to 2020, bsc was a product of Bluespec, Inc., licensed commercially to companies
and non-academic institutions, with free licenses to universities for teaching and research. During
this time, BSV was used for production ASIC designs in several top-ten semiconductor companies, a
network devices company, and a major Internet company, and for high-level architectural modeling
in a few top-ten computer companies. Bluespec, Inc. itself does all its RISC-V CPU and system
designs in BSV (many open-sourced on GitHub). Amongst universities, MIT (USA), University of
Cambridge (UK) and IIT Madras (India) have been and continue to be leading users.

Bluespec, Inc. has always considered the language to be fully open (i.e., anyone can freely build their
own language implementation); the only proprietary artefact was Bluespec, Inc.’s own implementa-
tion, the bsc compiler. In 2010, at an IEEE SystemVerilog Standards Committee planning meeting,
Bluespec, Inc. offered to donate the whole of the BSV language definition for incorporation into the
SystemVerilog standard, but this offer did not garner enough votes for acceptance.

In 2020, Bluespec, Inc. released the bsc compiler (and related proprietary artefacts: Bluesim,
Bluespec Development Workstation, etc.) in fully open-source form. All the source codes etc. are
now hosted in open GitHub repositories, and there are now many contributors from diverse locations
worldwide.
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(..) (exporting member names), 21
*/ (close nested comment), 13

., see structs, member selection
/* (open block comment), 13

// (one-line comment), 13

<= (Reg assignment), 70

? (don’t-care expression), 17, 80
[J (bit/part select from bit array), 82
$bitstoreal (Real system function), 120
$display, 114

$displayb, 114

$displayh, 114

$displayo, 114

$dumpoff, 119

$dumpon, 119

$dumpvars, 119

$fclose, 116

$fdisplay, 117

$fdisplayb, 117
$fdisplayh, 117
$fdisplayo, 117

$£flush, 119

$fgetc, 118

$finish, 119

$fopen, 116

$fwrite, 117

$fwriteb, 117

$fwriteh, 117

$fwriteo, 117
$realtobits (Real system function), 120
$sformat, 118

$sformatAvV, 118

$stime, 120

$stop, 119

$swrite, 118

$swriteAV, 118

$swriteb, 118

$swritebAV, 118

$swriteh, 118

$swritehAV, 118

$swriteo, 118

$swriteoAV, 118
$testPplusargs, 120

$time, 120

$ungetc, 118

$write, 114

$writeb, 114

$writeh, 114

$uriteo, 114

_read (Reg interface method), 112
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_write (Reg interface method), 112
{} (concatenation of bit arrays), 82
$ (character in identifiers), 14

_ (character in identifiers), 14

¢, see compiler directives

actions
Action (type), 84
action (keyword), 84
combining, 84
ActionValue (type), 85
Add (type provisos), 25
Alias, 53
always_enabled (attribute), 123
always_ready (attribute), 123
ancestor(BVI import statement), 152
AOF (clock ancestor attribute), 135
application
of functions to arguments, 87
of methods to arguments, 87
Arith (type class), 25
Ulnt, Int type instances, 111
array
anonymous type, 67
arrays
update, 69
asIfc (interface pseudo-function), 113
asReg (Reg function), 113
assignment statements
pattern matching in, 99
attribute
always_enabled, 123
always_ready, 123
clock_ancestors=, 135
clock_family=, 135
clock_prefix, 133
clocked_by=, 137
conflict_free, 130
default_clock_gate=, 134
default_clock_osc=, 134
default_reset=, 134
defualt_gate_inhigh=, 134
defualt_gate_unused=, 134
descending_urgency, 127
doc=, 138
enable=, 122
execution_order, 129
fire_when_enabled, 125
gate=, 136
gate_default_clock, 134



Reference Guide

BSV

gate_inhigh, 136
gate_input_clocks=, 134
gate_prefix, 133
gate_unused, 136
mutually_exclusive, 130
no_implicit_conditions, 126
noinline, 121

nosplit, 131

osc=, 136

parameter=, 138
port=, 123, 138
preempts, 131

prefix=, 123
ready=, 122
reset=, 136

reset_by=, 138
reset_prefix, 133
result=, 123
split, 131
synthesize, 121
attributes, 120
await (StmtFSM function), 105

begin (keyword), 73, 83
begin-end expression blocks, 83
begin-end statement blocks, 73
bind (Monad class method), 67
Bit (type), 110
bit (type), 110
BitExtend (type class), 25
Ulnt, Int type instances, 111
BitReduction (type class), 25
Ulnt, Int type instances, 111
Bits (type class), 25, 61
deriving, 62
representation of data types, 62
Ulnt, Int type instances, 111
Bitwise (type class), 25
Ulnt, Int type instances, 111
Bounded (type class), 25
deriving, 64
Ulnt, Int type instances, 111
BVI import (keyword)
in interfacing to Verilog, 141

C (scheduling annotations), 51
case (keyword), 73, 96, 97
case expression, 97
case statements

ordinary, 73

pattern matching, 96
casting, type, 88
CF (scheduling annotations), 51
Char (type), 111
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clear (FIFOF interface method), 114
clear (FIFO interface method), 113
clock_ancestors= (attribute), 135
clock_family= (attribute), 135
clock_prefix= (attribute), 133
clocked_by, 34
clocked_by=(attribute), 137
comment

block, 13

one-line, 13
compiler directives, 18
conditional expressions, 81

pattern matching in, 99
conditional statements, 73
conflict_free (attribute), 130
context, see provisos

context too weak (overloading resolution), 58

default (keyword), 74, 96

default_clock(BVI import statement), 147

default_clock_gate= (attribute), 134
default_clock_osc= (attribute), 134

default_gate_inhigh (attribute), 134
default_gate_unused (attribute), 134

default_reset(BVI import statement), 150

default_reset= (attribute), 134
‘define (compiler directive), 18
delay (StmtFSM function), 105
deq (FIFOF interface method), 114
deq (FIFO interface method), 113
deriving

Bits, 62

Bounded, 64

Eq, 64

FShow, 64

brief description, 27

for isomorphic types, 66

descending_urgency (attribute), 127

Div (type provisos), 25

doc= (attribute), 138
documentation attributes, 138
don’t-care expression, see 7
dumpoff, 119

dumpon, 119

dumpvars, 119

‘else (compiler directive), 19
else (keyword), 73

‘elsif (compiler directive), 19
Empty (interface), 31

enable= (attribute), 122

end (keyword), 73, 83

‘endif (compiler directive), 19
endpackage (keyword), 20
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enq (FIFOF interface method), 114
eng (FIFO interface method), 113
enum, 53
enumerations, 53
Eq (type class), 25

deriving, 64

Ulnt, Int type instances, 111
execution_order (attribute), 129
export (keyword), 20
export, identifiers from a package, 21

FIFO (interface type), 113

FIFOF (interface type), 114

finite state machines, 100
fire_when_enabled (attribute), 125
first (FIFOF interface method), 114
first (FIFO interface method), 113

fromInteger (Literal class method), 16

fromSizedInteger (SizedLiteral class method),

15
FShow (type class)
deriving, 64
FSMs, 100
function calls, 87
function definitions, 76

gate= (attribute), 136
gate_default_clock (attribute), 134
gate_inhigh (attribute), 136
gate_input_clocks= (attribute), 134
gate_prefix= (attribute), 133
gate_unused (attribute), 136
generated clock port renaming, 133
grammar, 10

higher order functions, 78

Identifier (grammar terminal), 14
identifier (grammar terminal), 14
identifiers, 14

case sensitivity, 14

export from a package, 21

import into a package, 21

qualified, 22

static scoping, 21

with § as first letter, 14
if (keyword), 73

in method implicit conditions, 36
if statements, 73

pattern matching in, 98
if-else statements, 73
‘ifdef (compiler directive), 19
‘ifndef (compiler directive), 19
implicit conditions, 36

on interface methods, 36
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import (keyword), 20
import "BDPI" (keyword), 156
import "BVI" (keyword), 141
import, identifiers into a package, 21
‘include (compiler directive), 18
infix operators
associativity, 81
precedence, 81
predefined, 81
inout(BVI import statement), 155
input_clock(BVI import statement), 146
input_reset(BVI import statement), 149
instance, 60
instance of type class (overloading group), 57,
60
instantiation (module), 34
Int (type), 111
int (type), 111
Integer (type), 111
Integer literals, 14
interface
expression, 91
instantiation, 34
interface (BVI import statement), 154
interface (keyword)
in interface declarations, 29
in interface expressions, 91
interfaces, 29
definition of, 27
Invalid
tagged union member ofMaybe type, 57

let, 69
‘line (compiler directive), 18
Literal (type class), 25
Ulnt, Int type instances, 111
Literals
Integer, 14
Real, 16
String, 17
Log (type provisos), 25
loop statements
statically unrolled, 75
temporal, in FSMs, 102

macro invocation (compiler directive), 19
match (keyword), 99
Max (type provisos), 25
Maybe (type), 57
meta notation, see grammar
method(BVI import statement), 144
method calls, 87
methods

of an interface, 29
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pattern matching in, 99
mkAutoFSM, 104
mkFIFO (module), 113
mkFIFOF (module), 114
mkFSM, 104
mkFSMServer, 109
mkFSMWithPred, 104
mkOnce, 104
mkReg (module), 112
mkRegU (module), 112
mkSizedFIFO (module), 113
mkSizedFIFOF (module), 114
module

definition of, 32

instantiation, 34
modules

definition of, 27

module (keyword), 32
Monad (type class), 67
Mul (type provisos), 25
mutually_exclusive (attribute), 130

no_implicit_conditions (attribute), 126
noAction (empty action), 84

noinline (attribute), 121

nosplit (attribute), 131

NumAlias, 53

operators
infix, 81
prefix, 81

0Ord (type class), 25, 57, 58

Ulnt, Int type instances, 111
osc= (attribute), 136
output_clock(BVI import statement), 148
output_reset(BVI import statement), 151
overloading groups, see type classes
overloading, of types, 57

pack (Bits type class overloaded function), 61

package, 20
package (keyword), 20
parameter, 32
parameter(BVI import statement), 143
parameter= (attribute), 138
path(BVI import statement), 153
pattern matching, 94

error, 97

in assignment statements, 99

in case expressions, 97

in case statements, 96

in conditional expressions, 99

in if statements, 98

in methods, 99

in rules, 99
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patterns, 94

polymorphism, 24

port(BVI import statement), 145
port= (attribute), 123, 138
preempts (attribute), 131
prefix= (attribute), 123

Prelude, see Standard Prelude, see Standard

Prelude
provisos, 58
brief description, 24

ready= (attribute), 122
Real literals, 16
records, see struct
Reg (type), 112
register assignment, 70

array element, 71

partial, 71
register writes, 70
clear, 100
reset= (attribute), 136
reset_by, 34
reset_by=(attribute), 138
reset_prefix= (attribute), 133
‘resetall (compiler directive), 19
result= (attribute), 123
return (Monad class method), 67
rules, 40

expression, 93

pattern matching in, 99
Rules (type), 93

SA (scheduling annotations), 51
same_family(BVI import statement), 152
SAR (scheduling annotations), 51
SB (scheduling annotations), 51
SBR (scheduling annotations), 51
schedule(BVI import statement), 152
scheduling annotations, 51
size types, 24

type classes for constraints, 25
Size0f (pseudo-function on types), 62
split (Bit function), 110
split (attribute), 131
Standard Prelude, 9, 22, 59, 84, 110, 111
start, 100
static elaboration, 13, 46, 47
StmtFSM

await, 105

callServer, 109

delay, 105

mkAutoFSM, 104

mkFSMServer, 109

mkFSMwithPred, 104
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mkFSM, 104
mkOnce, 104
StmtFSM (package), 100
StrAlias, 53
String (type), 111
String literals, 17
string types, 24
string0f (pseudo-function of string types), 27
struct
type definition, 54
struct, 54
structs
member selection, 89
update, 69
subinterfaces
declaration of, 31
definition of, 38
synthesize
modules, 43
synthesize (attribute), 121
system functions, 114
$bitstoreal, 120
$realtobits, 120
$stime, 120
$test$plusargs, 120
$time, 120
system tasks, 114
$display, 114
$displayb, 114
$displayh, 114
$displayo, 114
$dumpoff, 119
$dumpon, 119
$dumpvars, 119
$fclose, 116
$fdisplay, 117
$fdisplayb, 117
$fdisplayh, 117
$fdisplayo, 117
$£flush, 119
$fgetc, 118
$finish, 119
$fopen, 116
$fwrite, 117
$fwriteb, 117
$fwriteh, 117
$fwriteo, 117
$sformat, 118
$sformatAv, 118
$stop, 119
$swrite, 118
$swriteAV, 118
$swriteb, 118
$swritebAV, 118
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$swriteh, 118
$swritehAv, 118
$swriteo, 118
$swriteoAV, 118
$ungetc, 118
$urite, 114
$writeb, 114
$writeh, 114
$writeo, 114

tagged, see union
tagged union
member selection, see pattern matching
member selection using dot notation, 90
type definition, 54
update, 69
tuples
expressions, 112
patterns, 112
selecting components, 112
type definition, 111
type assertions
static, 88
type casting, 88
type classes, 57
Add, 25
Arith, 25
BitExtend, 25
BitReduction, 25
Bits, 25, 45, 61, 62, 121
Bitwise, 25
Bounded, 25, 64
Div, 25
Eq, 25, 64
FShow, 64, 116
Literal, 25
Log, 25
Max, 25
Monad, 67
Mul, 25
Ord, 25, 57
instance, 60
typeclass (declaring new), 58
instance declaration, 60
type declaration, 22
type variables, 24
typedef (keyword), 51
types, 22
parameterized, 24
polymorphic, 24

UInt (type), 111
‘undef (compiler directive), 19
underscore, see _
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union, 54
union tagged
type definition, 54
unpack (Bits type class overloaded function),
61

Valid
tagged union member ofMaybe type, 57
Value Change Dump, 119
valueOf (pseudo-function of size types), 26
variable assignment, 68
variable declaration, 67
variable initialization, 67
variables, 67
VCD, 118, 119
void (type, in tagged unions), 55
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